BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

387 related articles for article (PubMed ID: 10769120)

  • 1. Two critical cysteine residues implicated in disulfide bond formation and proper folding of Kir2.1.
    Cho HC; Tsushima RG; Nguyen TT; Guy HR; Backx PH
    Biochemistry; 2000 Apr; 39(16):4649-57. PubMed ID: 10769120
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conserved extracellular cysteine residues in the inwardly rectifying potassium channel Kir2.3 are required for function but not expression in the membrane.
    Bannister JP; Young BA; Sivaprasadarao A; Wray D
    FEBS Lett; 1999 Sep; 458(3):393-9. PubMed ID: 10570947
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intersubunit interaction between amino- and carboxyl-terminal cysteine residues in tetrameric shaker K+ channels.
    Schulteis CT; Nagaya N; Papazian DM
    Biochemistry; 1996 Sep; 35(37):12133-40. PubMed ID: 8810920
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conserved cysteine residues in the extracellular loop of the human P2X(1) receptor form disulfide bonds and are involved in receptor trafficking to the cell surface.
    Ennion SJ; Evans RJ
    Mol Pharmacol; 2002 Feb; 61(2):303-11. PubMed ID: 11809854
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel insights into the structural basis of pH-sensitivity in inward rectifier K+ channels Kir2.3.
    Ureche ON; Baltaev R; Ureche L; Strutz-Seebohm N; Lang F; Seebohm G
    Cell Physiol Biochem; 2008; 21(5-6):347-56. PubMed ID: 18453743
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of oxidizing and cysteine-reactive reagents on the inward rectifier potassium channels Kir2.3 and Kir1.1.
    Bannister JP; Young BA; Main MJ; Sivaprasadarao A; Wray D
    Pflugers Arch; 1999 Nov; 438(6):868-78. PubMed ID: 10591077
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Residues beyond the selectivity filter of the K+ channel kir2.1 regulate permeation and block by external Rb+ and Cs+.
    Thompson GA; Leyland ML; Ashmole I; Sutcliffe MJ; Stanfield PR
    J Physiol; 2000 Jul; 526 Pt 2(Pt 2):231-40. PubMed ID: 10896714
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conserved cysteine residues in the shaker K+ channel are not linked by a disulfide bond.
    Schulteis CT; John SA; Huang Y; Tang CY; Papazian DM
    Biochemistry; 1995 Feb; 34(5):1725-33. PubMed ID: 7849032
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The dependence of Ag+ block of a potassium channel, murine kir2.1, on a cysteine residue in the selectivity filter.
    Dart C; Leyland ML; Barrett-Jolley R; Shelton PA; Spencer PJ; Conley EC; Sutcliffe MJ; Stanfield PR
    J Physiol; 1998 Aug; 511 ( Pt 1)(Pt 1):15-24. PubMed ID: 9679159
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence for intersubunit interactions between S4 and S5 transmembrane segments of the Shaker potassium channel.
    Neale EJ; Elliott DJ; Hunter M; Sivaprasadarao A
    J Biol Chem; 2003 Aug; 278(31):29079-85. PubMed ID: 12883074
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The possible role of a disulphide bond in forming functional Kir2.1 potassium channels.
    Leyland ML; Dart C; Spencer PJ; Sutcliffe MJ; Stanfield PR
    Pflugers Arch; 1999 Nov; 438(6):778-81. PubMed ID: 10591065
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The selectivity filter of a potassium channel, murine kir2.1, investigated using scanning cysteine mutagenesis.
    Dart C; Leyland ML; Spencer PJ; Stanfield PR; Sutcliffe MJ
    J Physiol; 1998 Aug; 511 ( Pt 1)(Pt 1):25-32. PubMed ID: 9679160
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tyrosine decaging leads to substantial membrane trafficking during modulation of an inward rectifier potassium channel.
    Tong Y; Brandt GS; Li M; Shapovalov G; Slimko E; Karschin A; Dougherty DA; Lester HA
    J Gen Physiol; 2001 Feb; 117(2):103-18. PubMed ID: 11158164
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural and functional determinants in the S5-P region of HCN-encoded pacemaker channels revealed by cysteine-scanning substitutions.
    Au KW; Siu CW; Lau CP; Tse HF; Li RA
    Am J Physiol Cell Physiol; 2008 Jan; 294(1):C136-44. PubMed ID: 17989208
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Do voltage-gated Kv1.1 and inward rectifier Kir2.1 potassium channels form heteromultimers?
    Tytgat J; Buyse G; Eggermont J; Droogmans G; Nilius B; Daenens P
    FEBS Lett; 1996 Jul; 390(3):280-4. PubMed ID: 8706877
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing pore topology and conformational changes of Kir2.1 potassium channels by cysteine scanning mutagenesis.
    Kubo Y; Yoshimichi M; Heinemann SH
    FEBS Lett; 1998 Sep; 435(1):69-73. PubMed ID: 9755861
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of cloned Kir2 channels with native inward rectifier K+ channels from guinea-pig cardiomyocytes.
    Liu GX; Derst C; Schlichthörl G; Heinen S; Seebohm G; Brüggemann A; Kummer W; Veh RW; Daut J; Preisig-Müller R
    J Physiol; 2001 Apr; 532(Pt 1):115-26. PubMed ID: 11283229
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of a disulfide bridge essential for structure and function of the voltage-gated Ca(2+) channel α(2)δ-1 auxiliary subunit.
    Calderón-Rivera A; Andrade A; Hernández-Hernández O; González-Ramírez R; Sandoval A; Rivera M; Gomora JC; Felix R
    Cell Calcium; 2012 Jan; 51(1):22-30. PubMed ID: 22054663
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kir2.2v: a possible negative regulator of the inwardly rectifying K+ channel Kir2.2.
    Namba N; Inagaki N; Gonoi T; Seino Y; Seino S
    FEBS Lett; 1996 May; 386(2-3):211-4. PubMed ID: 8647284
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control of rectification and permeation by two distinct sites after the second transmembrane region in Kir2.1 K+ channel.
    Kubo Y; Murata Y
    J Physiol; 2001 Mar; 531(Pt 3):645-60. PubMed ID: 11251047
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.