BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 10769123)

  • 1. Conformational studies of human milk oligosaccharides using (1)H-(13)C one-bond NMR residual dipolar couplings.
    Martin-Pastor M; Bush CA
    Biochemistry; 2000 Apr; 39(16):4674-83. PubMed ID: 10769123
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The use of NMR residual dipolar couplings in aqueous dilute liquid crystalline medium for conformational studies of complex oligosaccharides.
    Martin-Pastor M; Bush CA
    Carbohydr Res; 2000 Jan; 323(1-4):147-55. PubMed ID: 10782296
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conformational studies of Lewis X and Lewis A trisaccharides using NMR residual dipolar couplings.
    Azurmendi HF; Martin-Pastor M; Bush CA
    Biopolymers; 2002 Feb; 63(2):89-98. PubMed ID: 11786997
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular conformations in the pentasaccharide LNF-1 derived from NMR spectroscopy and molecular dynamics simulations.
    Säwén E; Stevensson B; Ostervall J; Maliniak A; Widmalm G
    J Phys Chem B; 2011 Jun; 115(21):7109-21. PubMed ID: 21545157
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Refined structure of a flexible heptasaccharide using 1H-13C and 1H-1H NMR residual dipolar couplings in concert with NOE and long range scalar coupling constants.
    Martin-Pastor M; Bush CA
    J Biomol NMR; 2001 Feb; 19(2):125-39. PubMed ID: 11256809
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conformational studies on the selectin and natural killer cell receptor ligands sulfo- and sialyl-lacto-N-fucopentaoses (SuLNFPII and SLNFPII) using NMR spectroscopy and molecular dynamics simulations. Comparisons with the nonacidic parent molecule LNFPII.
    Kogelberg H; Frenkiel TA; Homans SW; Lubineau A; Feizi T
    Biochemistry; 1996 Feb; 35(6):1954-64. PubMed ID: 8639679
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A tool for the prediction of structures of complex sugars.
    Xia J; Margulis C
    J Biomol NMR; 2008 Dec; 42(4):241-56. PubMed ID: 18953494
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of the conformation of Lewis blood group oligosaccharides by simulation of two-dimensional nuclear Overhauser data.
    Cagas P; Bush CA
    Biopolymers; 1990; 30(11-12):1123-38. PubMed ID: 2081269
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measuring the magnitude of internal motion in a complex hexasaccharide.
    Ganguly S; Xia J; Margulis C; Stanwyck L; Bush CA
    Biopolymers; 2011 Jan; 95(1):39-50. PubMed ID: 20683925
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conformations of type 1 and type 2 oligosaccharides from ovarian cyst glycoprotein by nuclear Overhauser effect spectroscopy and T1 simulations.
    Cagas P; Bush CA
    Biopolymers; 1992 Mar; 32(3):277-92. PubMed ID: 1581547
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Searching and optimizing structure ensembles for complex flexible sugars.
    Xia J; Margulis CJ; Case DA
    J Am Chem Soc; 2011 Oct; 133(39):15252-5. PubMed ID: 21863822
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of NMR and molecular modeling results for a rigid and a flexible oligosaccharide.
    Xu Q; Gitti R; Bush CA
    Glycobiology; 1996 Apr; 6(3):281-8. PubMed ID: 8724136
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conformational analysis of a dermatan sulfate-derived tetrasaccharide by NMR, molecular modeling, and residual dipolar couplings.
    Silipo A; Zhang Z; Cañada FJ; Molinaro A; Linhardt RJ; Jiménez-Barbero J
    Chembiochem; 2008 Jan; 9(2):240-52. PubMed ID: 18072186
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conformational analysis of a tetrasaccharide based on NMR spectroscopy and molecular dynamics simulations.
    Landersjö C; Jansson JL; Maliniak A; Widmalm G
    J Phys Chem B; 2005 Sep; 109(36):17320-6. PubMed ID: 16853211
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conformational flexibility of the pentasaccharide LNF-2 deduced from NMR spectroscopy and molecular dynamics simulations.
    Säwén E; Hinterholzinger F; Landersjö C; Widmalm G
    Org Biomol Chem; 2012 Jun; 10(23):4577-85. PubMed ID: 22572908
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of aqueous molecular dynamics with NMR relaxation and residual dipolar couplings favors internal motion in a mannose oligosaccharide.
    Almond A; Bunkenborg J; Franch T; Gotfredsen CH; Duus JO
    J Am Chem Soc; 2001 May; 123(20):4792-802. PubMed ID: 11457289
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Separation of human milk oligosaccharides by recycling chromatography. First isolation of lacto-N-neo-difucohexaose II and 3'-Galactosyllactose from this source.
    Donald AS; Feeney J
    Carbohydr Res; 1988 Jul; 178():79-91. PubMed ID: 3274083
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dilute liquid crystals used to enhance residual dipolar couplings may alter conformational equilibrium in oligosaccharides.
    Berthault P; Jeannerat D; Camerel F; Alvarez Salgado F; Boulard Y; Gabriel JC; Desvaux H
    Carbohydr Res; 2003 Aug; 338(17):1771-85. PubMed ID: 12892944
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A perspective on the primary and three-dimensional structures of carbohydrates.
    Widmalm G
    Carbohydr Res; 2013 Aug; 378():123-32. PubMed ID: 23522728
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conformational studies of blood group A and blood group B oligosaccharides using NMR residual dipolar couplings.
    Azurmendi HF; Bush CA
    Carbohydr Res; 2002 May; 337(10):905-15. PubMed ID: 12007473
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.