BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

373 related articles for article (PubMed ID: 10769130)

  • 1. Epsilon amino caproic acid inhibits streptokinase-plasminogen activator complex formation and substrate binding through kringle-dependent mechanisms.
    Lin LF; Houng A; Reed GL
    Biochemistry; 2000 Apr; 39(16):4740-5. PubMed ID: 10769130
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of nonproteolytic active site formation in plasminogen.
    Gladysheva IP; Sazonova IY; Houng A; Hedstrom L; Reed GL
    Biochemistry; 2007 Jul; 46(30):8879-87. PubMed ID: 17616171
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Role of lysine binding sites in activation of plasminogen by streptokinase].
    Sokolovskaia LI; Makogonenko EM; Grinenko TV; Cederholm-Williams SA
    Ukr Biokhim Zh (1999); 2003; 75(2):25-32. PubMed ID: 14577167
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of the N-terminal region of staphylokinase (SAK): evidence for the participation of the N-terminal region of SAK in the enzyme-substrate complex formation.
    Rajamohan G; Dikshit KL
    FEBS Lett; 2000 Jun; 474(2-3):151-8. PubMed ID: 10838076
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of the kringle domain in plasminogen activation with staphylokinase.
    Arai K; Madoiwa S; Mimuro J; Asakura S; Matsuda M; Sako T; Sakata Y
    J Biochem; 1998 Jan; 123(1):71-7. PubMed ID: 9504411
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasminogen substrate recognition by the streptokinase-plasminogen catalytic complex is facilitated by Arg253, Lys256, and Lys257 in the streptokinase beta-domain and kringle 5 of the substrate.
    Tharp AC; Laha M; Panizzi P; Thompson MW; Fuentes-Prior P; Bock PE
    J Biol Chem; 2009 Jul; 284(29):19511-21. PubMed ID: 19473980
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Binding of the COOH-terminal lysine residue of streptokinase to plasmin(ogen) kringles enhances formation of the streptokinase.plasmin(ogen) catalytic complexes.
    Panizzi P; Boxrud PD; Verhamme IM; Bock PE
    J Biol Chem; 2006 Sep; 281(37):26774-8. PubMed ID: 16857686
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Streptokinase binds preferentially to the extended conformation of plasminogen through lysine binding site and catalytic domain interactions.
    Boxrud PD; Bock PE
    Biochemistry; 2000 Nov; 39(45):13974-81. PubMed ID: 11076540
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Substrate kringle-mediated catalysis by the streptokinase-plasmin activator complex: critical contribution of kringle-4 revealed by the mutagenesis approaches.
    Joshi KK; Nanda JS; Kumar P; Sahni G
    Biochim Biophys Acta; 2012 Feb; 1824(2):326-33. PubMed ID: 22056293
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid binding of plasminogen to streptokinase in a catalytic complex reveals a three-step mechanism.
    Verhamme IM; Bock PE
    J Biol Chem; 2014 Oct; 289(40):28006-18. PubMed ID: 25138220
    [TBL] [Abstract][Full Text] [Related]  

  • 11. alpha Domain deletion converts streptokinase into a fibrin-dependent plasminogen activator through mechanisms akin to staphylokinase and tissue plasminogen activator.
    Sazonova IY; Robinson BR; Gladysheva IP; Castellino FJ; Reed GL
    J Biol Chem; 2004 Jun; 279(24):24994-5001. PubMed ID: 15069059
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Domain truncation studies reveal that the streptokinase-plasmin activator complex utilizes long range protein-protein interactions with macromolecular substrate to maximize catalytic turnover.
    Sundram V; Nanda JS; Rajagopal K; Dhar J; Chaudhary A; Sahni G
    J Biol Chem; 2003 Aug; 278(33):30569-77. PubMed ID: 12773528
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of the interactions of plasminogen and tissue and vampire bat plasminogen activators with fibrinogen, fibrin, and the complex of D-dimer noncovalently linked to fragment E.
    Stewart RJ; Fredenburgh JC; Weitz JI
    J Biol Chem; 1998 Jul; 273(29):18292-9. PubMed ID: 9660794
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional roles of streptokinase C-terminal flexible peptide in active site formation and substrate recognition in plasminogen activation.
    Zhai P; Wakeham N; Loy JA; Zhang XC
    Biochemistry; 2003 Jan; 42(1):114-20. PubMed ID: 12515545
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resolution of conformational activation in the kinetic mechanism of plasminogen activation by streptokinase.
    Boxrud PD; Verhamme IM; Bock PE
    J Biol Chem; 2004 Aug; 279(35):36633-41. PubMed ID: 15215240
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of human plasminogen activation.
    Castellino FJ; Urano T; de Serrano V; Morris JP; Chibber BA
    Haemostasis; 1988; 18 Suppl 1():15-23. PubMed ID: 3127307
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasminogen activation by streptokinase via a unique mechanism.
    Young KC; Shi GY; Wu DH; Chang LC; Chang BI; Ou CP; Wu HL
    J Biol Chem; 1998 Jan; 273(5):3110-6. PubMed ID: 9446629
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deletion of Ile1 changes the mechanism of streptokinase: evidence for the molecular sexuality hypothesis.
    Wang S; Reed GL; Hedstrom L
    Biochemistry; 1999 Apr; 38(16):5232-40. PubMed ID: 10213631
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kringles of substrate plasminogen provide a 'catalytic switch' in plasminogen to plasmin turnover by Streptokinase.
    Sharma V; Kumar S; Sahni G
    Biochem J; 2020 Mar; 477(5):953-970. PubMed ID: 32069359
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Involvement of a nine-residue loop of streptokinase in the generation of macromolecular substrate specificity by the activator complex through interaction with substrate kringle domains.
    Dhar J; Pande AH; Sundram V; Nanda JS; Mande SC; Sahni G
    J Biol Chem; 2002 Apr; 277(15):13257-67. PubMed ID: 11821385
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.