BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 10769139)

  • 1. Role of metal ions in the reaction catalyzed by L-ribulose-5-phosphate 4-epimerase.
    Lee LV; Poyner RR; Vu MV; Cleland WW
    Biochemistry; 2000 Apr; 39(16):4821-30. PubMed ID: 10769139
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 13C and deuterium isotope effects suggest an aldol cleavage mechanism for L-ribulose-5-phosphate 4-epimerase.
    Lee LV; Vu MV; Cleland WW
    Biochemistry; 2000 Apr; 39(16):4808-20. PubMed ID: 10769138
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Epimerization via carbon-carbon bond cleavage. L-ribulose-5-phosphate 4-epimerase as a masked class II aldolase.
    Johnson AE; Tanner ME
    Biochemistry; 1998 Apr; 37(16):5746-54. PubMed ID: 9548961
    [TBL] [Abstract][Full Text] [Related]  

  • 4. D-Ribulose 5-phosphate 3-epimerase: functional and structural relationships to members of the ribulose-phosphate binding (beta/alpha)8-barrel superfamily.
    Akana J; Fedorov AA; Fedorov E; Novak WR; Babbitt PC; Almo SC; Gerlt JA
    Biochemistry; 2006 Feb; 45(8):2493-503. PubMed ID: 16489742
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic and magnetic resonance studies of the role of metal ions in the mechanism of Escherichia coli GDP-mannose mannosyl hydrolase, an unusual nudix enzyme.
    Legler PM; Lee HC; Peisach J; Mildvan AS
    Biochemistry; 2002 Apr; 41(14):4655-68. PubMed ID: 11926828
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catalysis and binding in L-ribulose-5-phosphate 4-epimerase: a comparison with L-fuculose-1-phosphate aldolase.
    Samuel J; Luo Y; Morgan PM; Strynadka NC; Tanner ME
    Biochemistry; 2001 Dec; 40(49):14772-80. PubMed ID: 11732896
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective substitution in vitro of an intrinsic zinc of Escherichia coli RNA polymerase with various divalent metals.
    Chatterji D; Wu FY
    Biochemistry; 1982 Sep; 21(19):4651-6. PubMed ID: 6753922
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Perturbing the metal site in D-xylose isomerase. Effect of mutations of His-220 on enzyme stability.
    Cha J; Cho Y; Whitaker RD; Carrell HL; Glusker JP; Karplus PA; Batt CA
    J Biol Chem; 1994 Jan; 269(4):2687-94. PubMed ID: 8300598
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metal binding sites of H(+)-ATPase from chloroplast and Bacillus PS3 studied by EPR and pulsed EPR spectroscopy of bound manganese(II).
    Buy C; Girault G; Zimmermann JL
    Biochemistry; 1996 Jul; 35(30):9880-91. PubMed ID: 8703962
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A revised mechanism for the alkaline phosphatase reaction involving three metal ions.
    Stec B; Holtz KM; Kantrowitz ER
    J Mol Biol; 2000 Jun; 299(5):1303-11. PubMed ID: 10873454
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electron paramagnetic resonance of D-xylose isomerase: evidence for metal ion movement induced by binding of cyclic substrates and inhibitors.
    Bogumil R; Kappl R; Hüttermann J; Witzel H
    Biochemistry; 1997 Mar; 36(9):2345-52. PubMed ID: 9054539
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetic analysis of the effects of monovalent cations and divalent metals on the activity of Mycobacterium tuberculosis alpha-isopropylmalate synthase.
    de Carvalho LP; Blanchard JS
    Arch Biochem Biophys; 2006 Jul; 451(2):141-8. PubMed ID: 16684501
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of metal binding to bovine inositol monophosphatase by changes in the near and far ultraviolet regions of the CD spectrum.
    Rees-Milton K; Thorne M; Greasley P; Churchich J; Gore MG
    Eur J Biochem; 1997 May; 246(1):211-7. PubMed ID: 9210486
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of the metal-binding sites of the beta-lactamase from Bacteroides fragilis.
    Crowder MW; Wang Z; Franklin SL; Zovinka EP; Benkovic SJ
    Biochemistry; 1996 Sep; 35(37):12126-32. PubMed ID: 8810919
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Existence of efficient divalent metal ion-catalyzed and inefficient divalent metal ion-independent channels in reactions catalyzed by a hammerhead ribozyme.
    Zhou JM; Zhou DM; Takagi Y; Kasai Y; Inoue A; Baba T; Taira K
    Nucleic Acids Res; 2002 Jun; 30(11):2374-82. PubMed ID: 12034824
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A functional role for a flexible loop containing Glu182 in the class II fructose-1,6-bisphosphate aldolase from Escherichia coli.
    Zgiby S; Plater AR; Bates MA; Thomson GJ; Berry A
    J Mol Biol; 2002 Jan; 315(2):131-40. PubMed ID: 11779234
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mutational analysis of divalent metal ion binding in the active site of class II α-mannosidase from Sulfolobus solfataricus.
    Hansen DK; Webb H; Nielsen JW; Harris P; Winther JR; Willemoës M
    Biochemistry; 2015 Mar; 54(11):2032-9. PubMed ID: 25751413
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metal specificity is correlated with two crucial active site residues in Escherichia coli alkaline phosphatase.
    Wang J; Stieglitz KA; Kantrowitz ER
    Biochemistry; 2005 Jun; 44(23):8378-86. PubMed ID: 15938627
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unraveling the substrate-metal binding site of ferrochelatase: an X-ray absorption spectroscopic study.
    Ferreira GC; Franco R; Mangravita A; George GN
    Biochemistry; 2002 Apr; 41(15):4809-18. PubMed ID: 11939775
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure and metal binding properties of ZnuA, a periplasmic zinc transporter from Escherichia coli.
    Yatsunyk LA; Easton JA; Kim LR; Sugarbaker SA; Bennett B; Breece RM; Vorontsov II; Tierney DL; Crowder MW; Rosenzweig AC
    J Biol Inorg Chem; 2008 Feb; 13(2):271-88. PubMed ID: 18027003
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.