These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 10769409)

  • 1. Mechanical behavior of calcified plaques: a summary of compression and stress-relaxation experiments.
    Topoleski LD; Salunke NV
    Z Kardiol; 2000; 89 Suppl 2():85-91. PubMed ID: 10769409
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Compressive stress-relaxation of human atherosclerotic plaque.
    Salunke NV; Topoleski LD; Humphrey JD; Mergner WJ
    J Biomed Mater Res; 2001 May; 55(2):236-41. PubMed ID: 11255175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Composition- and history-dependent radial compressive behavior of human atherosclerotic plaque.
    Topoleski LD; Salunke NV; Humphrey JD; Mergner WJ
    J Biomed Mater Res; 1997 Apr; 35(1):117-27. PubMed ID: 9104704
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inelasticity of human carotid atherosclerotic plaque.
    Maher E; Creane A; Sultan S; Hynes N; Lally C; Kelly DJ
    Ann Biomed Eng; 2011 Sep; 39(9):2445-55. PubMed ID: 21618044
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Behavior of atherosclerotic plaque components after in vitro angioplasty and atherectomy studied by high field MR imaging.
    Toussaint JF; Southern JF; Kantor HL; Jang IK; Fuster V
    Magn Reson Imaging; 1998; 16(2):175-83. PubMed ID: 9508274
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Laser angioplasty and the removal of calcified plaques. An in vitro study].
    Vorwerk D; Zolotas G; Kohnemann R; Hessel S; Adam G; Günther RW
    Rofo; 1990 Jun; 152(6):693-7. PubMed ID: 2163076
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Static circumferential tangential modulus of human atherosclerotic tissue.
    Loree HM; Grodzinsky AJ; Park SY; Gibson LJ; Lee RT
    J Biomech; 1994 Feb; 27(2):195-204. PubMed ID: 8132688
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stress-Relaxation and Cyclic Behavior of Human Carotid Plaque Tissue.
    Paritala PK; Yarlagadda PKDV; Kansky R; Wang J; Mendieta JB; Gu Y; McGahan T; Lloyd T; Li Z
    Front Bioeng Biotechnol; 2020; 8():60. PubMed ID: 32117939
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An experimental and computational investigation of the material behaviour of discrete homogenous iliofemoral and carotid atherosclerotic plaque constituents.
    O'Reilly BL; Hynes N; Sultan S; McHugh PE; McGarry JP
    J Biomech; 2020 Jun; 106():109801. PubMed ID: 32517981
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure-dependent dynamic mechanical behavior of fibrous caps from human atherosclerotic plaques.
    Lee RT; Grodzinsky AJ; Frank EH; Kamm RD; Schoen FJ
    Circulation; 1991 May; 83(5):1764-70. PubMed ID: 2022029
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High intensity ultrasound increases distensibility of calcific atherosclerotic arteries.
    Demer LL; Ariani M; Siegel RJ
    J Am Coll Cardiol; 1991 Nov; 18(5):1259-62. PubMed ID: 1833429
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the effect of calcification volume and configuration on the mechanical behaviour of carotid plaque tissue.
    Barrett HE; Cunnane EM; Kavanagh EG; Walsh MT
    J Mech Behav Biomed Mater; 2016 Mar; 56():45-56. PubMed ID: 26655460
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Atherosclerotic lesion mechanics versus biology.
    Lee RT
    Z Kardiol; 2000; 89 Suppl 2():80-4. PubMed ID: 10769408
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An experimental-nonlinear finite element study of a balloon expandable stent inside a realistic stenotic human coronary artery to investigate plaque and arterial wall injury.
    Karimi A; Razaghi R; Shojaei A; Navidbakhsh M
    Biomed Tech (Berl); 2015 Dec; 60(6):593-602. PubMed ID: 25870956
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relating the mechanical properties of atherosclerotic calcification to radiographic density: A nanoindentation approach.
    Cahalane RM; Barrett HE; O'Brien JM; Kavanagh EG; Moloney MA; Walsh MT
    Acta Biomater; 2018 Oct; 80():228-236. PubMed ID: 30218776
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calcifications in atherosclerotic plaques and impact on plaque biomechanics.
    Barrett HE; Van der Heiden K; Farrell E; Gijsen FJH; Akyildiz AC
    J Biomech; 2019 Apr; 87():1-12. PubMed ID: 30904335
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Primary stenting for complex atherosclerotic plaques in aortic and iliac stenoses.
    Onal B; Ilgit ET; Yücel C; Ozbek E; Vural M; Akpek S
    Cardiovasc Intervent Radiol; 1998; 21(5):386-92. PubMed ID: 9853144
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atherectomy of heavily calcified femoropopliteal stenotic lesions.
    Minko P; Katoh M; Jaeger S; Buecker A
    J Vasc Interv Radiol; 2011 Jul; 22(7):995-1000. PubMed ID: 21592824
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomechanics of atherosclerotic plaque.
    Salunke NV; Topoleski LD
    Crit Rev Biomed Eng; 1997; 25(3):243-85. PubMed ID: 9403237
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of longitudinal anatomical mismatch of stenting on the mechanical environment in human carotid artery with atherosclerotic plaques.
    Fan Z; Liu X; Sun A; Zhang N; Fan Z; Fan Y; Deng X
    Med Eng Phys; 2017 Oct; 48():114-119. PubMed ID: 28826570
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.