These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 10769756)

  • 1. Comparison of two PCR techniques used in amplification of microdissected plant chromosomes from rice and wheat.
    Zhou Y; Wang H; Wei J; Cui L; Deng X; Wang X; Chen Z
    Biotechniques; 2000 Apr; 28(4):766-7, 770-4. PubMed ID: 10769756
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DOP-PCR based painting of rye chromosomes in a wheat background.
    Deng C; Bai L; Li S; Zhang Y; Li X; Chen Y; Wang RR; Han F; Hu Z
    Genome; 2014 Sep; 57(9):473-9. PubMed ID: 25429799
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flow sorting of mitotic chromosomes in common wheat (Triticum aestivum L.).
    Vrána J; Kubaláková M; Simková H; Cíhalíková J; Lysák MA; Dolezel J
    Genetics; 2000 Dec; 156(4):2033-41. PubMed ID: 11102393
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Real-time polymerase chain reaction based assays for quantitative detection of barley, rice, sunflower, and wheat.
    Hernández M; Esteve T; Pla M
    J Agric Food Chem; 2005 Sep; 53(18):7003-9. PubMed ID: 16131102
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PCR amplification of microdissected wheat chromosome arms in a simple 'single tube' reaction.
    Albani D; Côté MJ; Armstrong KC; Chen Q; Segal A; Robert LS
    Plant J; 1993 Nov; 4(5):899-903. PubMed ID: 8275107
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genomic targeting and mapping of tiller inhibition gene (tin3) of wheat using ESTs and synteny with rice.
    Kuraparthy V; Sood S; Gill BS
    Funct Integr Genomics; 2008 Feb; 8(1):33-42. PubMed ID: 17891549
    [TBL] [Abstract][Full Text] [Related]  

  • 7. EST derived SSR markers for comparative mapping in wheat and rice.
    Yu JK; La Rota M; Kantety RV; Sorrells ME
    Mol Genet Genomics; 2004 Jul; 271(6):742-51. PubMed ID: 15197579
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Construction of a DNA library from chromosome 4 of rice (Oryza sativa) by microdissection.
    Mao YW; Liang SY; Song WQ; Li XL; Chen RY
    Cell Res; 1998 Dec; 8(4):285-93. PubMed ID: 9934536
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fine genetic mapping fails to dissociate durable stem rust resistance gene Sr2 from pseudo-black chaff in common wheat (Triticum aestivum L.).
    Kota R; Spielmeyer W; McIntosh RA; Lagudah ES
    Theor Appl Genet; 2006 Feb; 112(3):492-9. PubMed ID: 16311724
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Construction and characterization of three wheat bacterial artificial chromosome libraries.
    Cao W; Fu B; Wu K; Li N; Zhou Y; Gao Z; Lin M; Li G; Wu X; Ma Z; Jia H
    Int J Mol Sci; 2014 Nov; 15(12):21896-912. PubMed ID: 25464379
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Degenerate oligonucleotide primer MIG-seq: an effective PCR-based method for high-throughput genotyping.
    Nishimura K; Kokaji H; Motoki K; Yamazaki A; Nagasaka K; Mori T; Takisawa R; Yasui Y; Kawai T; Ushijima K; Yamasaki M; Saito H; Nakano R; Nakazaki T
    Plant J; 2024 Jun; 118(6):2296-2317. PubMed ID: 38459738
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PCR-based landmark unique gene (PLUG) markers effectively assign homoeologous wheat genes to A, B and D genomes.
    Ishikawa G; Yonemaru J; Saito M; Nakamura T
    BMC Genomics; 2007 May; 8():135. PubMed ID: 17535443
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A fine physical map of the rice chromosome 4.
    Zhao Q; Zhang Y; Cheng Z; Chen M; Wang S; Feng Q; Huang Y; Li Y; Tang Y; Zhou B; Chen Z; Yu S; Zhu J; Hu X; Mu J; Ying K; Hao P; Zhang L; Lu Y; Zhang LS; Liu Y; Yu Z; Fan D; Weng Q; Chen L; Lu T; Liu X; Jia P; Sun T; Wu Y; Zhang Y; Lu Y; Li C; Wang R; Lei H; Li T; Hu H; Wu M; Zhang R; Guan J; Zhu J; Fu G; Gu M; Hong G; Xue Y; Wing R; Jiang J; Han B
    Genome Res; 2002 May; 12(5):817-23. PubMed ID: 11997348
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Degenerate oligonucleotide-primed PCR: general amplification of target DNA by a single degenerate primer.
    Telenius H; Carter NP; Bebb CE; Nordenskjöld M; Ponder BA; Tunnacliffe A
    Genomics; 1992 Jul; 13(3):718-25. PubMed ID: 1639399
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative DNA sequence analysis of mapped wheat ESTs reveals the complexity of genome relationships between rice and wheat.
    La Rota M; Sorrells ME
    Funct Integr Genomics; 2004 Mar; 4(1):34-46. PubMed ID: 14740255
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Origin, structure, and behavior of a highly rearranged deletion chromosome 1BS-4 in wheat.
    Qi L; Friebe B; Gill BS
    Genome; 2005 Aug; 48(4):591-7. PubMed ID: 16094425
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonrandom distribution and frequencies of genomic and EST-derived microsatellite markers in rice, wheat, and barley.
    La Rota M; Kantety RV; Yu JK; Sorrells ME
    BMC Genomics; 2005 Feb; 6():23. PubMed ID: 15720707
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Macro- and microcolinearity between the genomic region of wheat chromosome 5B containing the Tsn1 gene and the rice genome.
    Lu H; Faris JD
    Funct Integr Genomics; 2006 Apr; 6(2):90-103. PubMed ID: 16372189
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generation of mouse chromosome painting probes by DOP-PCR amplification of microdissected meiotic chromosomes.
    Xiao Y; Darroudi F; Kuipers AG; de Jong JH; de Boer P; Natarajan AT
    Cytogenet Cell Genet; 1996; 75(1):63-6. PubMed ID: 8995491
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The PDI genes of wheat and their syntenic relationship to the esp2 locus of rice.
    Johnson JC; Appels R; Bhave M
    Funct Integr Genomics; 2006 Apr; 6(2):104-21. PubMed ID: 16187074
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.