These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 10770273)

  • 1. Modeling microbial survival during exposure to a lethal agent with varying intensity.
    Peleg M; Penchina CM
    Crit Rev Food Sci Nutr; 2000 Mar; 40(2):159-72. PubMed ID: 10770273
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calculation of the non-isothermal inactivation patterns of microbes having sigmoidal isothermal semi-logarithmic survival curves.
    Peleg M
    Crit Rev Food Sci Nutr; 2003; 43(6):645-58. PubMed ID: 14669882
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reinterpretation of microbial survival curves.
    Peleg M; Cole MB
    Crit Rev Food Sci Nutr; 1998 Jul; 38(5):353-80. PubMed ID: 9704188
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generating microbial survival curves during thermal processing in real time.
    Peleg M; Normand MD; Corradini MG
    J Appl Microbiol; 2005; 98(2):406-17. PubMed ID: 15659195
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimating microbial inactivation parameters from survival curves obtained under varying conditions--the linear case.
    Peleg M; Normand MD; Campanella OH
    Bull Math Biol; 2003 Mar; 65(2):219-34. PubMed ID: 12675330
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calculating microbial survival parameters and predicting survival curves from non-isothermal inactivation data.
    Peleg M; Normand MD
    Crit Rev Food Sci Nutr; 2004; 44(6):409-18. PubMed ID: 15615424
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimating the heat resistance parameters of bacterial spores from their survival ratios at the end of UHT and other heat treatments.
    Peleg M; Normand MD; Corradini MG; Van Asselt AJ; De Jong P; Ter Steeg PF
    Crit Rev Food Sci Nutr; 2008 Aug; 48(7):634-48. PubMed ID: 18663615
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A model of microbial survival curves in water treated with a volatile disinfectant.
    Corradini MG; Peleg M
    J Appl Microbiol; 2003; 95(6):1268-76. PubMed ID: 14633001
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interactive software for estimating the efficacy of non-isothermal heat preservation processes.
    Peleg M; Normand MD; Corradini MG
    Int J Food Microbiol; 2008 Aug; 126(1-2):250-7. PubMed ID: 18571264
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling non-isothermal heat inactivation of microorganisms having biphasic isothermal survival curves.
    Corradini MG; Normand MD; Peleg M
    Int J Food Microbiol; 2007 May; 116(3):391-9. PubMed ID: 17395330
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling and predicting non-isothermal microbial growth using general purpose software.
    Corradini MG; Amézquita A; Normand MD; Peleg M
    Int J Food Microbiol; 2006 Feb; 106(2):223-8. PubMed ID: 16226331
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimating the survival of Clostridium botulinum spores during heat treatments.
    Peleg M; Cole MB
    J Food Prot; 2000 Feb; 63(2):190-5. PubMed ID: 10678423
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Weibullian model for microbial injury and mortality.
    Corradini MG; Peleg M
    Int J Food Microbiol; 2007 Nov; 119(3):319-28. PubMed ID: 17904675
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A quasi-chemical model for the growth and death of microorganisms in foods by non-thermal and high-pressure processing.
    Doona CJ; Feeherry FE; Ross EW
    Int J Food Microbiol; 2005 Apr; 100(1-3):21-32. PubMed ID: 15854689
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theoretical study of aerobic vitamin C loss kinetics during commercial heat preservation and storage.
    Peleg M
    Food Res Int; 2017 Dec; 102():246-255. PubMed ID: 29195945
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stochastic and deterministic model of microbial heat inactivation.
    Corradini MG; Normand MD; Peleg M
    J Food Sci; 2010 Mar; 75(2):R59-70. PubMed ID: 20492253
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On calculating sterility in thermal preservation methods: application of the Weibull frequency distribution model.
    Mafart P; Couvert O; Gaillard S; Leguerinel I
    Int J Food Microbiol; 2002 Jan; 72(1-2):107-13. PubMed ID: 11843401
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extracting survival parameters from isothermal, isobaric, and "iso-concentration" inactivation experiments by the "3 end points method".
    Corradini MG; Normand MD; Newcomer C; Schaffner DW; Peleg M
    J Food Sci; 2009; 74(1):R1-R11. PubMed ID: 19200112
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Demonstration of the applicability of the Weibull-log-logistic survival model to the isothermal and nonisothermal inactivation of Escherichia coli K-12 MG1655.
    Corradini MG; Peleg M
    J Food Prot; 2004 Nov; 67(11):2617-21. PubMed ID: 15553651
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of heating rate on the thermal inactivation of Listeria monocytogenes.
    Stephens PJ; Cole MB; Jones MV
    J Appl Bacteriol; 1994 Dec; 77(6):702-8. PubMed ID: 7822230
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.