These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 10770770)

  • 1. Susceptibility to PNU-140690 (Tipranavir) of human immunodeficiency virus type 1 isolates derived from patients with multidrug resistance to other protease inhibitors.
    Rusconi S; La Seta Catamancio S; Citterio P; Kurtagic S; Violin M; Balotta C; Moroni M; Galli M; d'Arminio-Monforte A
    Antimicrob Agents Chemother; 2000 May; 44(5):1328-32. PubMed ID: 10770770
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic variation and susceptibilities to protease inhibitors among subtype B and F isolates in Brazil.
    Tanuri A; Vicente AC; Otsuki K; Ramos CA; Ferreira OC; Schechter M; Janini LM; Pieniazek D; Rayfield MA
    Antimicrob Agents Chemother; 1999 Feb; 43(2):253-8. PubMed ID: 9925514
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Resistance-related mutations in the HIV-1 protease gene of patients treated for 1 year with the protease inhibitor ritonavir (ABT-538).
    Schmit JC; Ruiz L; Clotet B; Raventos A; Tor J; Leonard J; Desmyter J; De Clercq E; Vandamme AM
    AIDS; 1996 Aug; 10(9):995-9. PubMed ID: 8853733
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selection and characterization of HIV-1 showing reduced susceptibility to the non-peptidic protease inhibitor tipranavir.
    Doyon L; Tremblay S; Bourgon L; Wardrop E; Cordingley MG
    Antiviral Res; 2005 Oct; 68(1):27-35. PubMed ID: 16122817
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Natural polymorphisms in the human immunodeficiency virus type 2 protease can accelerate time to development of resistance to protease inhibitors.
    Ntemgwa M; Brenner BG; Oliveira M; Moisi D; Wainberg MA
    Antimicrob Agents Chemother; 2007 Feb; 51(2):604-10. PubMed ID: 17116674
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mutations in the protease gene associated with virological failure to lopinavir/ritonavir-containing regimens.
    Santos JR; Llibre JM; Imaz A; Domingo P; Iribarren JA; Mariño A; Miralles C; Galindo MJ; Ornelas A; Moreno S; Schapiro JM; Clotet B;
    J Antimicrob Chemother; 2012 Jun; 67(6):1462-9. PubMed ID: 22431669
    [TBL] [Abstract][Full Text] [Related]  

  • 7. HIV-1 protease mutations and protease inhibitor cross-resistance.
    Rhee SY; Taylor J; Fessel WJ; Kaufman D; Towner W; Troia P; Ruane P; Hellinger J; Shirvani V; Zolopa A; Shafer RW
    Antimicrob Agents Chemother; 2010 Oct; 54(10):4253-61. PubMed ID: 20660676
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of protease inhibitor combinations in vitro: activity of lopinavir, amprenavir and tipranavir against HIV type 1 wild-type and drug-resistant isolates.
    Bulgheroni E; Citterio P; Croce F; Lo Cicero M; Viganò O; Soster F; Chou TC; Galli M; Rusconi S
    J Antimicrob Chemother; 2004 Mar; 53(3):464-8. PubMed ID: 14963061
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unique thermodynamic response of tipranavir to human immunodeficiency virus type 1 protease drug resistance mutations.
    Muzammil S; Armstrong AA; Kang LW; Jakalian A; Bonneau PR; Schmelmer V; Amzel LM; Freire E
    J Virol; 2007 May; 81(10):5144-54. PubMed ID: 17360759
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Response of feline immunodeficiency virus (FIV) to tipranavir may provide new clues for development of broad-based inhibitors of retroviral proteases acting on drug-resistant HIV-1.
    Norelli S; El Daker S; D'Ostilio D; Mele F; Mancini F; Taglia F; Ruggieri A; Ciccozzi M; Cauda R; Ciervo A; Barreca ML; Pistello M; Bendinelli M; Savarino A
    Curr HIV Res; 2008 Jun; 6(4):306-17. PubMed ID: 18691029
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting tipranavir and darunavir resistance using genotypic, phenotypic, and virtual phenotypic resistance patterns: an independent cohort analysis of clinical isolates highly resistant to all other protease inhibitors.
    Talbot A; Grant P; Taylor J; Baril JG; Liu TF; Charest H; Brenner B; Roger M; Shafer R; Cantin R; Zolopa A
    Antimicrob Agents Chemother; 2010 Jun; 54(6):2473-9. PubMed ID: 20368406
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tipranavir-ritonavir genotypic resistance score in protease inhibitor-experienced patients.
    Marcelin AG; Masquelier B; Descamps D; Izopet J; Charpentier C; Alloui C; Bouvier-Alias M; Signori-Schmuck A; Montes B; Chaix ML; Amiel C; Santos GD; Ruffault A; Barin F; Peytavin G; Lavignon M; Flandre P; Calvez V
    Antimicrob Agents Chemother; 2008 Sep; 52(9):3237-43. PubMed ID: 18625773
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of protease inhibitor resistance profiles on selection of HIV therapy in treatment-naive patients.
    Turner D; Schapiro JM; Brenner BG; Wainberg MA
    Antivir Ther; 2004 Jun; 9(3):301-14. PubMed ID: 15259893
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Drug resistance and drug combination features of the human immunodeficiency virus inhibitor, BCH-10652 [(+/-)-2'-deoxy-3'-oxa-4'-thiocytidine, dOTC].
    Taylor DL; Ahmed PS; Tyms AS; Wood LJ; Kelly LA; Chambers P; Clarke J; Bedard J; Bowlin TL; Rando RF
    Antivir Chem Chemother; 2000 Jul; 11(4):291-301. PubMed ID: 10950391
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Emergence of protease inhibitor resistance mutations in human immunodeficiency virus type 1 isolates from patients and rapid screening procedure for their detection.
    Vasudevachari MB; Zhang YM; Imamichi H; Imamichi T; Falloon J; Salzman NP
    Antimicrob Agents Chemother; 1996 Nov; 40(11):2535-41. PubMed ID: 8913459
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GRL-02031, a novel nonpeptidic protease inhibitor (PI) containing a stereochemically defined fused cyclopentanyltetrahydrofuran potent against multi-PI-resistant human immunodeficiency virus type 1 in vitro.
    Koh Y; Das D; Leschenko S; Nakata H; Ogata-Aoki H; Amano M; Nakayama M; Ghosh AK; Mitsuya H
    Antimicrob Agents Chemother; 2009 Mar; 53(3):997-1006. PubMed ID: 18955518
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mutation D30N is not preferentially selected by human immunodeficiency virus type 1 subtype C in the development of resistance to nelfinavir.
    Grossman Z; Paxinos EE; Averbuch D; Maayan S; Parkin NT; Engelhard D; Lorber M; Istomin V; Shaked Y; Mendelson E; Ram D; Petropoulos CJ; Schapiro JM
    Antimicrob Agents Chemother; 2004 Jun; 48(6):2159-65. PubMed ID: 15155216
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genotypic changes in human immunodeficiency virus type 1 protease associated with reduced susceptibility and virologic response to the protease inhibitor tipranavir.
    Baxter JD; Schapiro JM; Boucher CA; Kohlbrenner VM; Hall DB; Scherer JR; Mayers DL
    J Virol; 2006 Nov; 80(21):10794-801. PubMed ID: 16928764
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Food and Drug Administration analysis of tipranavir clinical resistance in HIV-1-infected treatment-experienced patients.
    Naeger LK; Struble KA
    AIDS; 2007 Jan; 21(2):179-85. PubMed ID: 17197808
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Short communication: Phenotypic protease inhibitor resistance and cross-resistance in the clinic from 2006 to 2008 and mutational prevalences in HIV from patients with discordant tipranavir and darunavir susceptibility phenotypes.
    Bethell R; Scherer J; Witvrouw M; Paquet A; Coakley E; Hall D
    AIDS Res Hum Retroviruses; 2012 Sep; 28(9):1019-24. PubMed ID: 22098079
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.