These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 10770836)

  • 1. On 'natural' learning and pruning in multi-layered perceptrons.
    Heskes T
    Neural Comput; 2000 Apr; 12(4):881-901. PubMed ID: 10770836
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multilayer Potts perceptrons with Levenberg-Marquardt learning.
    Wu JM
    IEEE Trans Neural Netw; 2008 Dec; 19(12):2032-43. PubMed ID: 19054728
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamics of learning near singularities in layered networks.
    Wei H; Zhang J; Cousseau F; Ozeki T; Amari S
    Neural Comput; 2008 Mar; 20(3):813-43. PubMed ID: 18045020
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adaptive method of realizing natural gradient learning for multilayer perceptrons.
    Amari S; Park H; Fukumizu K
    Neural Comput; 2000 Jun; 12(6):1399-409. PubMed ID: 10935719
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A learning rule for very simple universal approximators consisting of a single layer of perceptrons.
    Auer P; Burgsteiner H; Maass W
    Neural Netw; 2008 Jun; 21(5):786-95. PubMed ID: 18249524
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A fast and convergent stochastic MLP learning algorithm.
    Sakurai A
    Int J Neural Syst; 2001 Dec; 11(6):573-83. PubMed ID: 11852440
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamics of learning in multilayer perceptrons near singularities.
    Cousseau F; Ozeki T; Amari S
    IEEE Trans Neural Netw; 2008 Aug; 19(8):1313-28. PubMed ID: 18701364
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Complexity issues in natural gradient descent method for training multilayer perceptrons.
    Yang HH; Amari S
    Neural Comput; 1998 Nov; 10(8):2137-57. PubMed ID: 9804675
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new Jacobian matrix for optimal learning of single-layer neural networks.
    Peng JX; Li K; Irwin GW
    IEEE Trans Neural Netw; 2008 Jan; 19(1):119-29. PubMed ID: 18269943
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Training two-layered feedforward networks with variable projection method.
    Kim CT; Lee JJ
    IEEE Trans Neural Netw; 2008 Feb; 19(2):371-5. PubMed ID: 18269969
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fast curvature matrix-vector products for second-order gradient descent.
    Schraudolph NN
    Neural Comput; 2002 Jul; 14(7):1723-38. PubMed ID: 12079553
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pruning artificial neural networks using neural complexity measures.
    Jorgensen TD; Haynes BP; Norlund CC
    Int J Neural Syst; 2008 Oct; 18(5):389-403. PubMed ID: 18991362
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the structure and initial parameter identification of Gaussian RBF networks.
    Bhatt RB; Gopal M
    Int J Neural Syst; 2004 Dec; 14(6):373-80. PubMed ID: 15714604
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Networks with trainable amplitude of activation functions.
    Trentin E
    Neural Netw; 2001 May; 14(4-5):471-93. PubMed ID: 11411633
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimal pruning in neural networks.
    Barbato DM; Kinouchi O
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Dec; 62(6 Pt B):8387-94. PubMed ID: 11138138
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pruning and model-selecting algorithms in the RBF frameworks constructed by support vector learning.
    Hao PY; Chiang JH
    Int J Neural Syst; 2006 Aug; 16(4):283-93. PubMed ID: 16972316
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Learning by natural gradient on noncompact matrix-type pseudo-Riemannian manifolds.
    Fiori S
    IEEE Trans Neural Netw; 2010 May; 21(5):841-52. PubMed ID: 20236880
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Advanced search algorithms for information-theoretic learning with kernel-based estimators.
    Morejon RA; Principe JC
    IEEE Trans Neural Netw; 2004 Jul; 15(4):874-84. PubMed ID: 15461080
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A generalized growing and pruning RBF (GGAP-RBF) neural network for function approximation.
    Huang GB; Saratchandran P; Sundararajan N
    IEEE Trans Neural Netw; 2005 Jan; 16(1):57-67. PubMed ID: 15732389
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonlinear system modelling via optimal design of neural trees.
    Chen Y; Yang B; Dong J
    Int J Neural Syst; 2004 Apr; 14(2):125-37. PubMed ID: 15112370
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.