These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 10771126)

  • 61. Load partitioning influences the mechanical response of articular cartilage.
    Wayne JS
    Ann Biomed Eng; 1995; 23(1):40-7. PubMed ID: 7762881
    [TBL] [Abstract][Full Text] [Related]  

  • 62. A fibril-reinforced poroviscoelastic swelling model for articular cartilage.
    Wilson W; van Donkelaar CC; van Rietbergen B; Huiskes R
    J Biomech; 2005 Jun; 38(6):1195-204. PubMed ID: 15863103
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Compliant layer acetabular cups: friction testing of a range of materials and designs for a new generation of prosthesis that mimics the natural joint.
    Scholes SC; Burgess IC; Marsden HR; Unsworth A; Jones E; Smith N
    Proc Inst Mech Eng H; 2006 Jul; 220(5):583-96. PubMed ID: 16898216
    [TBL] [Abstract][Full Text] [Related]  

  • 64. MRI abnormalities of the acetabular labrum and articular cartilage are common in healed Legg-Calvé-Perthes disease with residual deformities of the hip.
    Maranho DA; Nogueira-Barbosa MH; Zamarioli A; Volpon JB
    J Bone Joint Surg Am; 2013 Feb; 95(3):256-65. PubMed ID: 23389789
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Strains across the acetabular labrum during hip motion: a cadaveric model.
    Safran MR; Giordano G; Lindsey DP; Gold GE; Rosenberg J; Zaffagnini S; Giori NJ
    Am J Sports Med; 2011 Jul; 39 Suppl():92S-102S. PubMed ID: 21709038
    [TBL] [Abstract][Full Text] [Related]  

  • 66. The acetabular labrum tissue shows unique transcriptome signatures compared to cartilage and responds to combined cyclic compression and surface shearing.
    Huber S; Ladner Y; Stoddart MJ; Leunig M; Ferguson SJ
    Gene; 2023 Mar; 856():147140. PubMed ID: 36574933
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Strain-rate dependent stiffness of articular cartilage in unconfined compression.
    Li LP; Buschmann MD; Shirazi-Adl A
    J Biomech Eng; 2003 Apr; 125(2):161-8. PubMed ID: 12751277
    [TBL] [Abstract][Full Text] [Related]  

  • 68. The biphasic poroviscoelastic behavior of articular cartilage: role of the surface zone in governing the compressive behavior.
    Setton LA; Zhu W; Mow VC
    J Biomech; 1993; 26(4-5):581-92. PubMed ID: 8478359
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Fibril reinforced poroelastic model predicts specifically mechanical behavior of normal, proteoglycan depleted and collagen degraded articular cartilage.
    Korhonen RK; Laasanen MS; Töyräs J; Lappalainen R; Helminen HJ; Jurvelin JS
    J Biomech; 2003 Sep; 36(9):1373-9. PubMed ID: 12893046
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Structure, composition and anisotropic swelling of the bovine acetabular labrum.
    Huber S; Santschi MXT; Schadow J; Leunig M; Ferguson SJ
    J Mech Behav Biomed Mater; 2024 Feb; 150():106333. PubMed ID: 38134586
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Relation of coxarthrosis to stresses and morphogenesis. A finite element analysis.
    Carter DR; Rapperport DJ; Fyhrie DP; Schurman DJ
    Acta Orthop Scand; 1987 Dec; 58(6):611-9. PubMed ID: 3442205
    [TBL] [Abstract][Full Text] [Related]  

  • 72. The capsular ligaments provide more hip rotational restraint than the acetabular labrum and the ligamentum teres : an experimental study.
    van Arkel RJ; Amis AA; Cobb JP; Jeffers JR
    Bone Joint J; 2015 Apr; 97-B(4):484-91. PubMed ID: 25820886
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Multiscale modelling for investigating the long-term time-dependent biphasic behaviour of the articular cartilage in the natural hip joint.
    Hua X; Shu L; Li J
    Biomech Model Mechanobiol; 2022 Aug; 21(4):1145-1155. PubMed ID: 35482145
    [TBL] [Abstract][Full Text] [Related]  

  • 74. A finite element model of the human knee joint for the study of tibio-femoral contact.
    Donahue TL; Hull ML; Rashid MM; Jacobs CR
    J Biomech Eng; 2002 Jun; 124(3):273-80. PubMed ID: 12071261
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Geometric parameterisation of pelvic bone and cartilage in contact analysis of the natural hip: an initial study.
    Hua X; Li J; Wilcox RK; Fisher J; Jones AC
    Proc Inst Mech Eng H; 2015 Aug; 229(8):570-80. PubMed ID: 26112348
    [TBL] [Abstract][Full Text] [Related]  

  • 76. A novel modelling and simulation method of hip joint surface contact stress.
    Wang M; Wang L; Li P; Fu Y
    Bioengineered; 2017 Jan; 8(1):105-112. PubMed ID: 27696938
    [TBL] [Abstract][Full Text] [Related]  

  • 77. A new discrete element analysis method for predicting hip joint contact stresses.
    Abraham CL; Maas SA; Weiss JA; Ellis BJ; Peters CL; Anderson AE
    J Biomech; 2013 Apr; 46(6):1121-7. PubMed ID: 23453394
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Robust and general method for determining surface fluid flow boundary conditions in articular cartilage contact mechanics modeling.
    Pawaskar SS; Fisher J; Jin Z
    J Biomech Eng; 2010 Mar; 132(3):031001. PubMed ID: 20459189
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Biphasic Analysis of Cartilage Stresses in the Patellofemoral Joint.
    Jones B; Hung CT; Ateshian G
    J Knee Surg; 2016 Feb; 29(2):92-8. PubMed ID: 26641078
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Hemiarthroplasty of hip joint: An experimental validation using porcine acetabulum.
    Pawaskar SS; Grosland NM; Ingham E; Fisher J; Jin Z
    J Biomech; 2011 May; 44(8):1536-42. PubMed ID: 21439570
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.