BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 10771188)

  • 1. Hydroxyl radical formation in the perilymph of asphyxic guinea pig.
    Hara A; Serizawa F; Tabuchi K; Senarita M; Kusakari J
    Hear Res; 2000 May; 143(1-2):110-4. PubMed ID: 10771188
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of asphyxia on the composition of cationic elements in the perilymph.
    Hara A; Komeno M; Senarita M; Serizawa F; Ishikawa T; Kusakari J
    Hear Res; 1995 Oct; 90(1-2):228-31. PubMed ID: 8975001
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of microdialysis for in-vivo monitoring of hydroxyl free-radical generation in the rat.
    Obata T
    J Pharm Pharmacol; 1997 Jul; 49(7):724-30. PubMed ID: 9255719
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The use of salicylate hydroxylation to detect hydroxyl radical generation in ischemic and traumatic brain injury. Reversal by tirilazad mesylate (U-74006F).
    Althaus JS; Andrus PK; Williams CM; VonVoigtlander PF; Cazers AR; Hall ED
    Mol Chem Neuropathol; 1993 Oct; 20(2):147-62. PubMed ID: 8297419
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Myocardial microdialysis of salicylic acid to detect hydroxyl radical generation during ischemia.
    Obata T; Hosokawa H; Soeda T; Karashima K; Uchida Y; Yamanaka Y
    Comp Biochem Physiol B Biochem Mol Biol; 1995 Jan; 110(1):277-83. PubMed ID: 7858947
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydroxyl radical-scavenging property of secoisolariciresinol diglucoside (SDG) isolated from flax-seed.
    Prasad K
    Mol Cell Biochem; 1997 Mar; 168(1-2):117-23. PubMed ID: 9062900
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of hydroxyl radical-scavenging property of purpurogallin using high pressure liquid chromatography.
    Prasad K; Laxdal VA
    Mol Cell Biochem; 1994 Jun; 135(2):153-8. PubMed ID: 7838143
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aromatic hydroxylation as a potential measure of hydroxyl-radical formation in vivo. Identification of hydroxylated derivatives of salicylate in human body fluids.
    Grootveld M; Halliwell B
    Biochem J; 1986 Jul; 237(2):499-504. PubMed ID: 3026319
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antioxidant activity of allicin, an active principle in garlic.
    Prasad K; Laxdal VA; Yu M; Raney BL
    Mol Cell Biochem; 1995 Jul; 148(2):183-9. PubMed ID: 8594422
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elevated extracellular glutamate levels increased the formation of hydroxyl radical in the striatum of anesthetized rat.
    Yang CS; Tsai PJ; Lin NN; Liu L; Kuo JS
    Free Radic Biol Med; 1995 Oct; 19(4):453-9. PubMed ID: 7590394
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anoxia/reoxygenation induces hydroxyl free radical formation in brain microvessels.
    Grammas P; Liu GJ; Wood K; Floyd RA
    Free Radic Biol Med; 1993 May; 14(5):553-7. PubMed ID: 8394270
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo monitoring of norepinephrine and hydroxyl free radical generation by ferrous iron in the myocardium with a microdialysis technique.
    Obata T; Hosokawa H; Yamanaka Y
    Comp Biochem Physiol C Comp Pharmacol Toxicol; 1993 Nov; 106(3):635-8. PubMed ID: 7905801
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimating hydroxyl radical content in rat brain using systemic and intraventricular salicylate: impact of methamphetamine.
    Giovanni A; Liang LP; Hastings TG; Zigmond MJ
    J Neurochem; 1995 Apr; 64(4):1819-25. PubMed ID: 7891110
    [TBL] [Abstract][Full Text] [Related]  

  • 14. L-DOPA does not enhance hydroxyl radical formation in the nigrostriatal dopamine system of rats with a unilateral 6-hydroxydopamine lesion.
    Camp DM; Loeffler DA; LeWitt PA
    J Neurochem; 2000 Mar; 74(3):1229-40. PubMed ID: 10693956
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of salicylate with high pressure liquid chromatography and electrochemical detection (LCED) as a sensitive measure of hydroxyl free radicals in adriamycin treated rats.
    Floyd RA; Henderson R; Watson JJ; Wong PK
    J Free Radic Biol Med; 1986; 2(1):13-8. PubMed ID: 3021837
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydroxyl radical generation following ischaemia-reperfusion in cell-free perfused rat kidney.
    Kadkhodaee M; Endre ZH; Towner RA; Cross M
    Biochim Biophys Acta; 1995 Feb; 1243(2):169-74. PubMed ID: 7873560
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Block of cardiac ATP-sensitive K(+) channels reduces hydroxyl radicals in the rat myocardium.
    Obata T; Yamanaka Y
    Arch Biochem Biophys; 2000 Jun; 378(2):195-200. PubMed ID: 10860536
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Brain hydroxyl radical generation in acute experimental head injury.
    Hall ED; Andrus PK; Yonkers PA
    J Neurochem; 1993 Feb; 60(2):588-94. PubMed ID: 8380437
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence of hydroxyl free radical generation by calcium overload in rat myocardium.
    Obata T; Tamura M; Yamanaka Y
    J Pharm Pharmacol; 1997 Aug; 49(8):787-90. PubMed ID: 9379357
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of salicylate and its hydroxylated adducts 2,3- and 2,5-dihydroxybenzoic acids as possible indices for in vivo hydroxyl radical formation in combination with catechol- and indoleamines and their metabolites in cerebrospinal fluid and brain tissue.
    Sloot WN; Gramsbergen JB
    J Neurosci Methods; 1995 Aug; 60(1-2):141-9. PubMed ID: 8544473
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.