These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 10771198)

  • 1. Noise suppression of transient-evoked otoacoustic emissions. II. Derived narrow-band contributions.
    Molenaar DG; Shaw G; Eggermont JJ
    Hear Res; 2000 May; 143(1-2):208-22. PubMed ID: 10771198
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Noise suppression of transient-evoked otoacoustic emissions. I. A comparison with the non-linear method.
    Molenaar DG; Shaw G; Eggermont JJ
    Hear Res; 2000 May; 143(1-2):197-207. PubMed ID: 10771197
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessing Sensorineural Hearing Loss Using Various Transient-Evoked Otoacoustic Emission Stimulus Conditions.
    Putterman DB; Keefe DH; Hunter LL; Garinis AC; Fitzpatrick DF; McMillan GP; Feeney MP
    Ear Hear; 2017; 38(4):507-520. PubMed ID: 28437273
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Digital subtraction method for transient evoked otoacoustic emission recording with ipsilateral noise suppression: an application to stimulus artifact reduction.
    Arslan RB; Ozdamar O; Ulgen Y
    Audiology; 2001; 40(2):55-62. PubMed ID: 11409763
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of noise bandwidth on the contralateral suppression of transient evoked otoacoustic emissions.
    Velenovsky DS; Glattke TJ
    Hear Res; 2002 Feb; 164(1-2):39-48. PubMed ID: 11950523
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of intermodulation distortion in transient-evoked otoacoustic emissions.
    Yates GK; Withnell RH
    Hear Res; 1999 Oct; 136(1-2):49-64. PubMed ID: 10511624
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acoustically and electrically evoked contralateral suppression of otoacoustic emissions in guinea pigs.
    Popelár J; Valvoda J; Syka J
    Hear Res; 1999 Sep; 135(1-2):61-70. PubMed ID: 10491955
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transient-evoked otoacoustic emissions in a group of professional singers who have normal pure-tone hearing thresholds.
    Hamdan AL; Abouchacra KS; Zeki Al Hazzouri AG; Zaytoun G
    Ear Hear; 2008 Jun; 29(3):360-77. PubMed ID: 18382377
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in transient-evoked otoacoustic emission levels with negative tympanometric peak pressure in infants and toddlers.
    Prieve BA; Calandruccio L; Fitzgerald T; Mazevski A; Georgantas LM
    Ear Hear; 2008 Aug; 29(4):533-42. PubMed ID: 18469719
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analyzing transient-evoked otoacoustic emissions by concentration of frequency and time.
    Wu HT; Liu YW
    J Acoust Soc Am; 2018 Jul; 144(1):448. PubMed ID: 30075682
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An optimal filtering technique to reduce the influence of low-frequency noise on click-evoked otoacoustic emissions.
    Tognola G; Ravazzani P; Grandori F
    Br J Audiol; 1995 Jun; 29(3):153-60. PubMed ID: 8574201
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of various durations of noise exposure on auditory brainstem response, distortion product otoacoustic emissions and transient evoked otoacoustic emissions in rats.
    Fraenkel R; Freeman S; Sohmer H
    Audiol Neurootol; 2001; 6(1):40-9. PubMed ID: 11173774
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contralateral suppression of transient-evoked otoacoustic emissions in children with sickle cell disease.
    Stuart A; Preast JL
    Ear Hear; 2012; 33(3):421-9. PubMed ID: 22246207
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of contralateral stimulation by two-tone complexes, narrow-band and broad-band noise signals on the 2f1-f2 distortion product otoacoustic emission levels in humans.
    Lisowska G; Smurzynski J; Morawski K; Namyslowski G; Probst R
    Acta Otolaryngol; 2002 Sep; 122(6):613-9. PubMed ID: 12403123
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using the short-time correlation coefficient to compare transient- and derived, noise-evoked otoacoustic emission temporal waveforms.
    Harte JM; Elliott SJ
    J Acoust Soc Am; 2005 May; 117(5):2989-98. PubMed ID: 15957769
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The influence of evoking stimulus level on the neural suppression of transient evoked otoacoustic emissions.
    Ryan S; Kemp DT
    Hear Res; 1996 May; 94(1-2):140-7. PubMed ID: 8789819
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [A study on the correlation between distortion product otoacoustic emissions and transient evoked otoacoustic emissions].
    Xue X; Zhong N
    Lin Chuang Er Bi Yan Hou Ke Za Zhi; 2003 Apr; 17(4):198-200. PubMed ID: 12838856
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of the frequency selectivity of contralateral acoustic stimulation on the active mechanisms of the organ of corti by analyzing the changes in the amplitude of transitory evoked otoacoustic emissions and distortion products.
    Ibargüen AM; Santaolalla Montoya F; del Rey AS; Fernandez JM
    J Otolaryngol Head Neck Surg; 2008 Aug; 37(4):457-62. PubMed ID: 19128576
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of transient evoked otoacoustic emissions and distortion product otoacoustic emissions when screening hearing in preschool children in a community setting.
    Dille M; Glattke TJ; Earl BR
    Int J Pediatr Otorhinolaryngol; 2007 Nov; 71(11):1789-95. PubMed ID: 17870187
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Intra- and intersubject variability of acoustically evoked otoacoustic emissions. I. Transiently evoked otoacoustic emissions].
    Dieler R; Shehata-Dieler WE; Klagges T; Moser LM
    Laryngorhinootologie; 1999 Jun; 78(6):339-44. PubMed ID: 10439354
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.