These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 10772354)

  • 41. Role responsibilities in mechanical ventilation and weaning in pediatric intensive care units: a national survey.
    Blackwood B; Junk C; Lyons JD; McAuley DF; Rose L
    Am J Crit Care; 2013 May; 22(3):189-97. PubMed ID: 23635928
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Noninvasive ventilation as a systematic extubation and weaning technique in acute-on-chronic respiratory failure: a prospective, randomized controlled study.
    Girault C; Daudenthun I; Chevron V; Tamion F; Leroy J; Bonmarchand G
    Am J Respir Crit Care Med; 1999 Jul; 160(1):86-92. PubMed ID: 10390384
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Predictors of successful weaning from prolonged mechanical ventilation in Taiwan.
    Wu YK; Kao KC; Hsu KH; Hsieh MJ; Tsai YH
    Respir Med; 2009 Aug; 103(8):1189-95. PubMed ID: 19359156
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Oxygen and ventilator weaning during inpatient pediatric pulmonary rehabilitation.
    Kharasch VS; Haley SM; Dumas HM; Ludlow LH; O'Brien JE
    Pediatr Pulmonol; 2003 Apr; 35(4):280-7. PubMed ID: 12629625
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The utility of weaning protocols to expedite liberation from mechanical ventilation.
    Ely EW
    Respir Care Clin N Am; 2000 Jun; 6(2):303-19,vi. PubMed ID: 10757964
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Weaning from long-term mechanical ventilation: a nonpulmonary weaning index.
    Todorova L; Temelkov A
    J Clin Monit Comput; 2004 Aug; 18(4):275-81. PubMed ID: 15779839
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Mechanical Ventilator Parameter Estimation for Lung Health through Machine Learning.
    Oruganti Venkata SS; Koenig A; Pidaparti RM
    Bioengineering (Basel); 2021 May; 8(5):. PubMed ID: 34067153
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Multialternative decision field theory: a dynamic connectionist model of decision making.
    Roe RM; Busemeyer JR; Townsend JT
    Psychol Rev; 2001 Apr; 108(2):370-92. PubMed ID: 11381834
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Expert validation of prediction models for a clinical decision-support system in audiology.
    Buhl M; Akin G; Saak S; Eysholdt U; Radeloff A; Kollmeier B; Hildebrandt A
    Front Neurol; 2022; 13():960012. PubMed ID: 36081868
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Neural networks: from science fiction to pharmacy.
    Hartnell N; MacKinnon NJ
    Am J Health Syst Pharm; 2003 Sep; 60(18):1908-9. PubMed ID: 14521047
    [No Abstract]   [Full Text] [Related]  

  • 51. Weaning is demeaning. It's time for liberation!
    Brandstetter RD; Tamarin F
    Chest; 1992 Jun; 101(6):1488. PubMed ID: 1600761
    [No Abstract]   [Full Text] [Related]  

  • 52. Development and validation of a machine-learning model for prediction of hypoxemia after extubation in intensive care units.
    Xia M; Jin C; Cao S; Pei B; Wang J; Xu T; Jiang H
    Ann Transl Med; 2022 May; 10(10):577. PubMed ID: 35722375
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Development of an Interactive AI System for the Optimal Timing Prediction of Successful Weaning from Mechanical Ventilation for Patients in Respiratory Care Centers.
    Liao KM; Ko SC; Liu CF; Cheng KC; Chen CM; Sung MI; Hsing SC; Chen CJ
    Diagnostics (Basel); 2022 Apr; 12(4):. PubMed ID: 35454023
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Artificial Intelligence in Anesthesiology: Current Techniques, Clinical Applications, and Limitations.
    Hashimoto DA; Witkowski E; Gao L; Meireles O; Rosman G
    Anesthesiology; 2020 Feb; 132(2):379-394. PubMed ID: 31939856
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Artificial Intelligence and Machine Learning in Anesthesiology.
    Connor CW
    Anesthesiology; 2019 Dec; 131(6):1346-1359. PubMed ID: 30973516
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Parameter selection for and implementation of a web-based decision-support tool to predict extubation outcome in premature infants.
    Mueller M; Wagner CL; Annibale DJ; Knapp RG; Hulsey TC; Almeida JS
    BMC Med Inform Decis Mak; 2006 Mar; 6():11. PubMed ID: 16509967
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A comparison of human and machine-based predictions of successful weaning from mechanical ventilation.
    Gottschalk A; Hyzer MC; Geer RT
    Med Decis Making; 2000; 20(2):160-9. PubMed ID: 10772354
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Improvement in the Prediction of Ventilator Weaning Outcomes by an Artificial Neural Network in a Medical ICU.
    Kuo HJ; Chiu HW; Lee CN; Chen TT; Chang CC; Bien MY
    Respir Care; 2015 Nov; 60(11):1560-9. PubMed ID: 26329358
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Patients on weaning trials from mechanical ventilation classified with neural networks and feature selection.
    Giraldo B; Arizmendi C; Romero E; Alquezar R; Caminal P; Benito S; Ballesteros D
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2195-8. PubMed ID: 17946503
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Web-based prediction of extubation outcome in premature infants on mechanical ventilation using an artificial neural network.
    Mueller M; Wagner CL; Annibale DJ; Hulsey TC; Knapp RG; Almeida JS
    AMIA Annu Symp Proc; 2003; 2003():945. PubMed ID: 14728450
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.