These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 10772471)
1. Metabolism of the ethanolamine-type antihistamine diphenhydramine (Benadryl) by the fungus Cunninghamella elegans. Moody JD; Heinze TM; Hansen EB; Cerniglia CE Appl Microbiol Biotechnol; 2000 Mar; 53(3):310-5. PubMed ID: 10772471 [TBL] [Abstract][Full Text] [Related]
2. Fungal transformations of antihistamines: metabolism of brompheniramine, chlorpheniramine, and pheniramine to N-oxide and N-demethylated metabolites by the fungus Cunninghamella elegans. Hansen EB; Cho BP; Korfmacher WA; Cerniglia CE Xenobiotica; 1995 Nov; 25(10):1081-92. PubMed ID: 8578764 [TBL] [Abstract][Full Text] [Related]
3. Biotransformation of doxepin by Cunninghamella elegans. Moody JD; Freeman JP; Cerniglia CE Drug Metab Dispos; 1999 Oct; 27(10):1157-64. PubMed ID: 10497142 [TBL] [Abstract][Full Text] [Related]
4. Fungal biotransformation of the antihistamine azatadine by Cunninghamella elegans. Zhang D; Hansen EB; Deck J; Heinze TM; Sutherland JB; Cerniglia CE Appl Environ Microbiol; 1996 Sep; 62(9):3477-9. PubMed ID: 8795241 [TBL] [Abstract][Full Text] [Related]
5. Transformation of verapamil by Cunninghamella blakesleeana. Sun L; Huang HH; Liu L; Zhong DF Appl Environ Microbiol; 2004 May; 70(5):2722-7. PubMed ID: 15128524 [TBL] [Abstract][Full Text] [Related]
6. Fungal transformations of antihistamines: metabolism of methapyrilene, thenyldiamine and tripelennamine to N-oxide and N-demethylated derivatives. Cerniglia CE; Hansen EB; Lambert KJ; Korfmacher WA; Miller DW Xenobiotica; 1988 Mar; 18(3):301-12. PubMed ID: 2898181 [TBL] [Abstract][Full Text] [Related]
7. Oxidation of phenothiazine and phenoxazine by Cunninghamella elegans. Sutherland JB; Freeman JP; Heinze TM; Moody JD; Parshikov IA; Williams AJ; Zhang D Xenobiotica; 2001 Nov; 31(11):799-809. PubMed ID: 11765142 [TBL] [Abstract][Full Text] [Related]
8. Fungal transformations of antihistamines: metabolism of cyproheptadine hydrochloride by Cunninghamella elegans. Zhang D; Hansen EB; Deck J; Heinze TM; Henderson A; Korfmacher WA; Cerniglia CE Xenobiotica; 1997 Mar; 27(3):301-15. PubMed ID: 9141237 [TBL] [Abstract][Full Text] [Related]
9. Biotransformation of metoprolol by the fungus Cunninghamella blakesleeana. Ma B; Huang HH; Chen XY; Sun YM; Lin LH; Zhong DF Acta Pharmacol Sin; 2007 Jul; 28(7):1067-74. PubMed ID: 17588344 [TBL] [Abstract][Full Text] [Related]
10. Biotransformation of indomethacin by the fungus Cunninghamella blakesleeana. Zhang P; Lin LH; Huang HH; Xu HY; Zhong DF Acta Pharmacol Sin; 2006 Aug; 27(8):1097-102. PubMed ID: 16867265 [TBL] [Abstract][Full Text] [Related]
11. Biotransformation of flumequine by the fungus Cunninghamella elegans. Williams AJ; Deck J; Freeman JP; Paul Chiarelli M; Adjei MD; Heinze TM; Sutherland JB Chemosphere; 2007 Feb; 67(2):240-3. PubMed ID: 17123578 [TBL] [Abstract][Full Text] [Related]
12. Transformation of amoxapine by Cunninghamella elegans. Moody JD; Zhang D; Heinze TM; Cerniglia CE Appl Environ Microbiol; 2000 Aug; 66(8):3646-9. PubMed ID: 10919836 [TBL] [Abstract][Full Text] [Related]
13. Metabolism of metolachlor by the fungus Cunninghamella elegans. Pothuluri JV; Evans FE; Doerge DR; Churchwell MI; Cerniglia CE Arch Environ Contam Toxicol; 1997 Feb; 32(2):117-25. PubMed ID: 9069185 [TBL] [Abstract][Full Text] [Related]
14. The effect of the corticosteroid hormone cortexolone on the metabolites produced during phenanthrene biotransformation in Cunninghamella elegans. Lisowska K; Długoński J; Freeman JP; Cerniglia CE Chemosphere; 2006 Aug; 64(9):1499-506. PubMed ID: 16504243 [TBL] [Abstract][Full Text] [Related]
15. Biotransformation of pantoprazole by the fungus Cunninghamella blakesleeana. Xie ZY; Huang HH; Zhong DF Xenobiotica; 2005 May; 35(5):467-77. PubMed ID: 16012078 [TBL] [Abstract][Full Text] [Related]
16. Biotransformation of chlorpromazine and methdilazine by Cunninghamella elegans. Zhang D; Freeman JP; Sutherland JB; Walker AE; Yang Y; Cerniglia CE Appl Environ Microbiol; 1996 Mar; 62(3):798-803. PubMed ID: 8975609 [TBL] [Abstract][Full Text] [Related]
17. Microbial transformation of the antihistamine pyrilamine maleate. Formation of potential mammalian metabolites. Hansen EB; Cerniglia CE; Korfmacher WA; Miller DW; Heflich RH Drug Metab Dispos; 1987; 15(1):97-106. PubMed ID: 2881765 [TBL] [Abstract][Full Text] [Related]
18. Structural elucidation of N-oxidized clemastine metabolites by liquid chromatography/tandem mass spectrometry and the use of Cunninghamella elegans to facilitate drug metabolite identification. Tevell Aberg A; Löfgren H; Bondesson U; Hedeland M Rapid Commun Mass Spectrom; 2010 May; 24(10):1447-56. PubMed ID: 20411584 [TBL] [Abstract][Full Text] [Related]
19. Investigating the ability of the microbial model Cunninghamella elegans for the metabolism of synthetic tryptamines. Grafinger KE; Wilke A; König S; Weinmann W Drug Test Anal; 2019 May; 11(5):721-729. PubMed ID: 30462883 [TBL] [Abstract][Full Text] [Related]
20. Formation of mammalian metabolites of cyclobenzaprine by the fungus, Cunninghamella elegans. Zhang D; Evans FE; Freeman JP; Yang Y; Deck J; Cerniglia CE Chem Biol Interact; 1996 Oct; 102(2):79-92. PubMed ID: 8950223 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]