These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
230 related articles for article (PubMed ID: 10772617)
1. Multisorbent tubes for collecting volatile organic compounds in spacecraft air. Matney ML; Beck SW; Limero TF; James JT AIHAJ; 2000; 61(1):69-75. PubMed ID: 10772617 [TBL] [Abstract][Full Text] [Related]
2. Comparative study of the adsorption performance of a multi-sorbent bed (Carbotrap, Carbopack X, Carboxen 569) and a Tenax TA adsorbent tube for the analysis of volatile organic compounds (VOCs). Gallego E; Roca FJ; Perales JF; Guardino X Talanta; 2010 May; 81(3):916-24. PubMed ID: 20298873 [TBL] [Abstract][Full Text] [Related]
3. Determination of volatile organic compounds in workplace air by multisorbent adsorption/thermal desorption-GC/MS. Wu CH; Feng CT; Lo YS; Lin TY; Lo JG Chemosphere; 2004 Jul; 56(1):71-80. PubMed ID: 15109881 [TBL] [Abstract][Full Text] [Related]
4. Measurement of breakthrough volumes of volatile chemical warfare agents on a poly(2,6-diphenylphenylene oxide)-based adsorbent and application to thermal desorption-gas chromatography/mass spectrometric analysis. Kanamori-Kataoka M; Seto Y J Chromatogr A; 2015 Sep; 1410():19-27. PubMed ID: 26239699 [TBL] [Abstract][Full Text] [Related]
5. Optimisation of sorbent trapping and thermal desorption-gas chromatography-mass spectrometric conditions for sampling and analysis of hydrogen cyanide in air. Juillet Y; Le Moullec S; Bégos A; Bellier B Analyst; 2005 Jun; 130(6):977-82. PubMed ID: 15912249 [TBL] [Abstract][Full Text] [Related]
6. Use of new generation poly(styrene-divinylbenzene) resins for gas-phase trapping-thermal desorption. Application to the retention of seven volatile organic compounds. López P; Batlle R; Nerín C; Cacho J; Ferreira V J Chromatogr A; 2007 Jan; 1139(1):36-44. PubMed ID: 17126844 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of the stability of a mixture of volatile organic compounds on sorbents for the determination of emissions from indoor materials and products using thermal desorption/gas chromatography/mass spectrometry. Brown VM; Crump DR; Plant NT; Pengelly I J Chromatogr A; 2014 Jul; 1350():1-9. PubMed ID: 24877978 [TBL] [Abstract][Full Text] [Related]
8. Comparative study of the adsorption performance of an active multi-sorbent bed tube (Carbotrap, Carbopack X, Carboxen 569) and a Radiello(®) diffusive sampler for the analysis of VOCs. Gallego E; Roca FJ; Perales JF; Guardino X Talanta; 2011 Jul; 85(1):662-72. PubMed ID: 21645756 [TBL] [Abstract][Full Text] [Related]
9. Development and validation of personal monitoring methods for low levels of acrylonitrile in workplace atmosphere: II. Thermal desorption and field validation. Borders RA; Gluck SJ; Sowle WF; Melcher RG Am Ind Hyg Assoc J; 1986 Mar; 47(3):158-63. PubMed ID: 3706141 [TBL] [Abstract][Full Text] [Related]
10. Ambient level volatile organic compound (VOC) monitoring using solid adsorbents--recent US EPA studies. McClenny WA; Oliver KD; Jacumin HH; Daughtrey EH J Environ Monit; 2002 Oct; 4(5):695-705. PubMed ID: 12400917 [TBL] [Abstract][Full Text] [Related]
11. Time-weighted average passive sampling with a solid-phase microextraction device. Chen Y; Pawliszyn J Anal Chem; 2003 May; 75(9):2004-10. PubMed ID: 12720333 [TBL] [Abstract][Full Text] [Related]
12. Sorbent-based sampling methods for volatile and semi-volatile organic compounds in air Part 1: Sorbent-based air monitoring options. Woolfenden E J Chromatogr A; 2010 Apr; 1217(16):2674-84. PubMed ID: 20106481 [TBL] [Abstract][Full Text] [Related]
13. Development and application of a thermal desorption method for the analysis of polar volatile organic compounds in workplace air. Hallama RA; Rosenberg E; Grasserbauer M J Chromatogr A; 1998 Jun; 809(1-2):47-63. PubMed ID: 9677711 [TBL] [Abstract][Full Text] [Related]
14. Evaluation of sample recovery of malodorous livestock gases from air sampling bags, solid-phase microextraction fibers, Tenax TA sorbent tubes, and sampling canisters. Koziel JA; Spinhirne JP; Lloyd JD; Parker DB; Wright DW; Kuhrt FW J Air Waste Manag Assoc; 2005 Aug; 55(8):1147-57. PubMed ID: 16187584 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of adsorbents for volatile methyl siloxanes sampling based on the determination of their breakthrough volume. Lamaa L; Ferronato C; Fine L; Jaber F; Chovelon JM Talanta; 2013 Oct; 115():881-6. PubMed ID: 24054678 [TBL] [Abstract][Full Text] [Related]
16. Study of preservation of polydimethylsiloxane/Carboxen solid-phase microextraction fibres before and after sampling of volatile organic compounds in indoor air. Larroque V; Desauziers V; Mocho P J Chromatogr A; 2006 Aug; 1124(1-2):106-11. PubMed ID: 16769076 [TBL] [Abstract][Full Text] [Related]
17. Determination of volatile organic compounds in different microenvironments by multibed adsorption and short-path thermal desorption followed by gas chromatographic-mass spectrometric analysis. Kuntasal OO; Karman D; Wang D; Tuncel SG; Tuncel G J Chromatogr A; 2005 Dec; 1099(1-2):43-54. PubMed ID: 16330271 [TBL] [Abstract][Full Text] [Related]
19. Performance evaluation of a sorbent tube sampling method using short path thermal desorption for volatile organic compounds. Peng CY; Batterman S J Environ Monit; 2000 Aug; 2(4):313-24. PubMed ID: 11249785 [TBL] [Abstract][Full Text] [Related]
20. Development of a solid phase microextraction (SPME) method for the sampling of VOC traces in indoor air. Larroque V; Desauziers V; Mocho P J Environ Monit; 2006 Jan; 8(1):106-11. PubMed ID: 16395466 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]