These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

70 related articles for article (PubMed ID: 10772784)

  • 1. Comparison between human and artificial neural network detection of Laplacian-derived electroencephalographic activity related to unilateral voluntary movements.
    Babiloni F; Carducci F; Cerutti S; Liberati D; Rossini PM; Urbano A; Babiloni C
    Comput Biomed Res; 2000 Feb; 33(1):59-74. PubMed ID: 10772784
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Movement-related electroencephalographic reactivity in Alzheimer disease.
    Babiloni C; Babiloni F; Carducci F; Cincotti F; Del Percio C; De Pino G; Maestrini S; Priori A; Tisei P; Zanetti O; Rossini PM
    Neuroimage; 2000 Aug; 12(2):139-46. PubMed ID: 10913320
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intracerebral ERD/ERS in voluntary movement and in cognitive visuomotor task.
    Rektor I; Sochůrková D; Bocková M
    Prog Brain Res; 2006; 159():311-30. PubMed ID: 17071240
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human cortical electroencephalography (EEG) rhythms during the observation of simple aimless movements: a high-resolution EEG study.
    Babiloni C; Babiloni F; Carducci F; Cincotti F; Cocozza G; Del Percio C; Moretti DV; Rossini PM
    Neuroimage; 2002 Oct; 17(2):559-72. PubMed ID: 12377134
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatial and temporal distribution enhancement of movement-related brain macropotentials.
    Filligoi GC; Fattorini L
    Comput Biomed Res; 1999 Jun; 32(3):198-208. PubMed ID: 10356302
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detecting movement-related EEG change by wavelet decomposition-based neural networks trained with single thumb movement.
    Chen CW; Lin CC; Ju MS
    Clin Neurophysiol; 2007 Apr; 118(4):802-14. PubMed ID: 17317306
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cutaneous inputs can activate the ipsilateral primary motor cortex during bimanual sensory-driven movements in humans.
    Shibuya S; Ohki Y
    J Neurophysiol; 2004 Dec; 92(6):3200-9. PubMed ID: 15115786
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation of cortical oscillatory activities induced by varying single-pulse transcranial magnetic stimulation intensity over the left primary motor area: a combined EEG and TMS study.
    Fuggetta G; Fiaschi A; Manganotti P
    Neuroimage; 2005 Oct; 27(4):896-908. PubMed ID: 16054397
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bilateral changes in excitability of sensorimotor cortices during unilateral movement: combined electroencephalographic and transcranial magnetic stimulation study.
    Kicić D; Lioumis P; Ilmoniemi RJ; Nikulin VV
    Neuroscience; 2008 Apr; 152(4):1119-29. PubMed ID: 18353562
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Centrifugal regulation of human cortical responses to a task-relevant somatosensory signal triggering voluntary movement.
    Kida T; Wasaka T; Inui K; Akatsuka K; Nakata H; Kakigi R
    Neuroimage; 2006 Sep; 32(3):1355-64. PubMed ID: 16806987
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-paced movements induce high-frequency gamma oscillations in primary motor cortex.
    Cheyne D; Bells S; Ferrari P; Gaetz W; Bostan AC
    Neuroimage; 2008 Aug; 42(1):332-42. PubMed ID: 18511304
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic intra- and interhemispheric interactions during unilateral and bilateral hand movements assessed with fMRI and DCM.
    Grefkes C; Eickhoff SB; Nowak DA; Dafotakis M; Fink GR
    Neuroimage; 2008 Jul; 41(4):1382-94. PubMed ID: 18486490
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Human supplementary motor area: a role in voluntary movements and its clinical significance].
    Ikeda A
    Rinsho Shinkeigaku; 2007 Jan; 47(1):8-20. PubMed ID: 17491331
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Is there a "neural efficiency" in athletes? A high-resolution EEG study.
    Del Percio C; Rossini PM; Marzano N; Iacoboni M; Infarinato F; Aschieri P; Lino A; Fiore A; Toran G; Babiloni C; Eusebi F
    Neuroimage; 2008 Oct; 42(4):1544-53. PubMed ID: 18602484
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Imagery of voluntary movement of fingers, toes, and tongue activates corresponding body-part-specific motor representations.
    Ehrsson HH; Geyer S; Naito E
    J Neurophysiol; 2003 Nov; 90(5):3304-16. PubMed ID: 14615433
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The forward EEG solutions can be computed using artificial neural networks.
    Sun M; Sclabassi RJ
    IEEE Trans Biomed Eng; 2000 Aug; 47(8):1044-50. PubMed ID: 10943052
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alterations in voluntary movement execution in Huntington's disease are related to the dominant motor system: evidence from event-related potentials.
    Beste C; Konrad C; Saft C; Ukas T; Andrich J; Pfleiderer B; Hausmann M; Falkenstein M
    Exp Neurol; 2009 Mar; 216(1):148-57. PubMed ID: 19111540
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Global activation of primary motor cortex during voluntary movements in man.
    Stippich C; Blatow M; Durst A; Dreyhaupt J; Sartor K
    Neuroimage; 2007 Feb; 34(3):1227-37. PubMed ID: 17137794
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activity in the supplementary motor area related to learning and performance during a sequential visuomotor task.
    Lee D; Quessy S
    J Neurophysiol; 2003 Feb; 89(2):1039-56. PubMed ID: 12574479
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Further evidence for excitability changes in human primary motor cortex during ipsilateral voluntary contractions.
    Liang N; Murakami T; Funase K; Narita T; Kasai T
    Neurosci Lett; 2008 Mar; 433(2):135-40. PubMed ID: 18261851
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.