These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 10772860)
41. Predicting proteasomal cleavage sites: a comparison of available methods. Saxová P; Buus S; Brunak S; Keşmir C Int Immunol; 2003 Jul; 15(7):781-7. PubMed ID: 12807816 [TBL] [Abstract][Full Text] [Related]
42. The components of the proteasome system and their role in MHC class I antigen processing. Krüger E; Kuckelkorn U; Sijts A; Kloetzel PM Rev Physiol Biochem Pharmacol; 2003; 148():81-104. PubMed ID: 12687403 [TBL] [Abstract][Full Text] [Related]
43. Computational prediction of cleavage using proteasomal in vitro digestion and MHC I ligand data. Lu YF; Sheng H; Zhang Y; Li ZY J Zhejiang Univ Sci B; 2013 Sep; 14(9):816-28. PubMed ID: 24009202 [TBL] [Abstract][Full Text] [Related]
44. Contribution of proteasomal beta-subunits to the cleavage of peptide substrates analyzed with yeast mutants. Dick TP; Nussbaum AK; Deeg M; Heinemeyer W; Groll M; Schirle M; Keilholz W; Stevanović S; Wolf DH; Huber R; Rammensee HG; Schild H J Biol Chem; 1998 Oct; 273(40):25637-46. PubMed ID: 9748229 [TBL] [Abstract][Full Text] [Related]
45. Modeling the in vitro 20S proteasome activity: the effect of PA28-alphabeta and of the sequence and length of polypeptides on the degradation kinetics. Mishto M; Luciani F; Holzhütter HG; Bellavista E; Santoro A; Textoris-Taube K; Franceschi C; Kloetzel PM; Zaikin A J Mol Biol; 2008 Apr; 377(5):1607-17. PubMed ID: 18336834 [TBL] [Abstract][Full Text] [Related]
46. Computer simulations to predict the availability of peptides with known HLA class I motifs possibly generated by proteolysis of HIV-1 proteins in infected cells. Becker Y Virus Genes; 1995; 10(3):227-37. PubMed ID: 8560784 [TBL] [Abstract][Full Text] [Related]
47. A kinetic model of vertebrate 20S proteasome accounting for the generation of major proteolytic fragments from oligomeric peptide substrates. Holzhütter HG; Kloetzel PM Biophys J; 2000 Sep; 79(3):1196-205. PubMed ID: 10968984 [TBL] [Abstract][Full Text] [Related]
48. Cleavage site analysis in picornaviral polyproteins: discovering cellular targets by neural networks. Blom N; Hansen J; Blaas D; Brunak S Protein Sci; 1996 Nov; 5(11):2203-16. PubMed ID: 8931139 [TBL] [Abstract][Full Text] [Related]
49. Sequences that flank subdominant and cryptic epitopes influence the proteolytic generation of MHC class I-presented peptides. Mo AX; van Lelyveld SF; Craiu A; Rock KL J Immunol; 2000 Apr; 164(8):4003-10. PubMed ID: 10754291 [TBL] [Abstract][Full Text] [Related]
50. Antigen processing by proteasomes: insights into the molecular basis of crypticity. Djaballah H Mol Biol Rep; 1997 Mar; 24(1-2):63-7. PubMed ID: 9228283 [TBL] [Abstract][Full Text] [Related]
51. Modeling the MHC class I pathway by combining predictions of proteasomal cleavage, TAP transport and MHC class I binding. Tenzer S; Peters B; Bulik S; Schoor O; Lemmel C; Schatz MM; Kloetzel PM; Rammensee HG; Schild H; Holzhütter HG Cell Mol Life Sci; 2005 May; 62(9):1025-37. PubMed ID: 15868101 [TBL] [Abstract][Full Text] [Related]
52. Rapid degradation of a large fraction of newly synthesized proteins by proteasomes. Schubert U; Antón LC; Gibbs J; Norbury CC; Yewdell JW; Bennink JR Nature; 2000 Apr; 404(6779):770-4. PubMed ID: 10783891 [TBL] [Abstract][Full Text] [Related]
53. Two distinct proteolytic processes in the generation of a major histocompatibility complex class I-presented peptide. Craiu A; Akopian T; Goldberg A; Rock KL Proc Natl Acad Sci U S A; 1997 Sep; 94(20):10850-5. PubMed ID: 9380723 [TBL] [Abstract][Full Text] [Related]
54. The cleavage preference of the proteasome governs the yield of antigenic peptides. Eggers M; Boes-Fabian B; Ruppert T; Kloetzel PM; Koszinowski UH J Exp Med; 1995 Dec; 182(6):1865-70. PubMed ID: 7500032 [TBL] [Abstract][Full Text] [Related]
55. Proteasomes are regulated by interferon gamma: implications for antigen processing. Yang Y; Waters JB; Früh K; Peterson PA Proc Natl Acad Sci U S A; 1992 Jun; 89(11):4928-32. PubMed ID: 1594596 [TBL] [Abstract][Full Text] [Related]
56. Proteasomal cleavage site prediction of protein antigen using BP neural network based on a new set of amino acid descriptor. Wang Y; Lin Y; Shu M; Wang R; Hu Y; Lin Z J Mol Model; 2013 Aug; 19(8):3045-52. PubMed ID: 23584554 [TBL] [Abstract][Full Text] [Related]
57. Amino acid identity and/or position determines the proteasomal cleavage of the HLA-A*0201-restricted peptide tumor antigen MAGE-3271-279. Miconnet I; Servis C; Cerottini JC; Romero P; Lévy F J Biol Chem; 2000 Sep; 275(35):26892-7. PubMed ID: 10859301 [TBL] [Abstract][Full Text] [Related]
58. Differential proteasomal processing of hydrophobic and hydrophilic protein regions: contribution to cytotoxic T lymphocyte epitope clustering in HIV-1-Nef. Lucchiari-Hartz M; Lindo V; Hitziger N; Gaedicke S; Saveanu L; van Endert PM; Greer F; Eichmann K; Niedermann G Proc Natl Acad Sci U S A; 2003 Jun; 100(13):7755-60. PubMed ID: 12810958 [TBL] [Abstract][Full Text] [Related]
59. Archaebacterial and eukaryotic proteasomes prefer different sites in cleaving gonadotropin-releasing hormone. Leibovitz D; Koch Y; Fridkin M; Pitzer F; Zwickl P; Dantes A; Baumeister W; Amsterdam A J Biol Chem; 1995 May; 270(19):11029-32. PubMed ID: 7744730 [TBL] [Abstract][Full Text] [Related]
60. Role of peptide processing predictions in T cell epitope identification: contribution of different prediction programs. Calis JJ; Reinink P; Keller C; Kloetzel PM; Keşmir C Immunogenetics; 2015 Feb; 67(2):85-93. PubMed ID: 25475908 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]