These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 10773075)

  • 41. Probing RNA hairpins with cobalt(III)hexammine and electrospray ionization mass spectrometry.
    Kieltyka JW; Chow CS
    J Am Soc Mass Spectrom; 2006 Oct; 17(10):1376-1382. PubMed ID: 16904339
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A dual-specificity pseudouridine synthase: an Escherichia coli synthase purified and cloned on the basis of its specificity for psi 746 in 23S RNA is also specific for psi 32 in tRNA(phe).
    Wrzesinski J; Nurse K; Bakin A; Lane BG; Ofengand J
    RNA; 1995 Jun; 1(4):437-48. PubMed ID: 7493321
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Identification and site of action of the remaining four putative pseudouridine synthases in Escherichia coli.
    Del Campo M; Kaya Y; Ofengand J
    RNA; 2001 Nov; 7(11):1603-15. PubMed ID: 11720289
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Identification of pseudouridine methyltransferase in Escherichia coli.
    Ero R; Peil L; Liiv A; Remme J
    RNA; 2008 Oct; 14(10):2223-33. PubMed ID: 18755836
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Selecting rRNA binding sites for the ribosomal proteins L4 and L6 from randomly fragmented rRNA: application of a method called SERF.
    Stelzl U; Spahn CM; Nierhaus KH
    Proc Natl Acad Sci U S A; 2000 Apr; 97(9):4597-602. PubMed ID: 10781065
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Crystal structure of the catalytic domain of RluD, the only rRNA pseudouridine synthase required for normal growth of Escherichia coli.
    Del Campo M; Ofengand J; Malhotra A
    RNA; 2004 Feb; 10(2):231-9. PubMed ID: 14730022
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Interaction of Escherichia coli DbpA with 23S rRNA in different functional states of the enzyme.
    Karginov FV; Uhlenbeck OC
    Nucleic Acids Res; 2004; 32(10):3028-32. PubMed ID: 15173385
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Presence and location of modified nucleotides in Escherichia coli tmRNA: structural mimicry with tRNA acceptor branches.
    Felden B; Hanawa K; Atkins JF; Himeno H; Muto A; Gesteland RF; McCloskey JA; Crain PF
    EMBO J; 1998 Jun; 17(11):3188-96. PubMed ID: 9606200
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Mapping pseudouridines in RNA molecules.
    Ofengand J; Del Campo M; Kaya Y
    Methods; 2001 Nov; 25(3):365-73. PubMed ID: 11860291
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Solution structure of psi32-modified anticodon stem-loop of Escherichia coli tRNAPhe.
    Cabello-Villegas J; Nikonowicz EP
    Nucleic Acids Res; 2005; 33(22):6961-71. PubMed ID: 16377777
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Importance of transient structures during post-transcriptional refolding of the pre-23S rRNA and ribosomal large subunit assembly.
    Liiv A; Remme J
    J Mol Biol; 2004 Sep; 342(3):725-41. PubMed ID: 15342233
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The pseudouridine residues of ribosomal RNA.
    Ofengand J; Bakin A; Wrzesinski J; Nurse K; Lane BG
    Biochem Cell Biol; 1995; 73(11-12):915-24. PubMed ID: 8722007
    [TBL] [Abstract][Full Text] [Related]  

  • 53. NMR structure and Mg2+ binding of an RNA segment that underlies the L7/L12 stalk in the E.coli 50S ribosomal subunit.
    Zhao Q; Nagaswamy U; Lee H; Xia Y; Huang HC; Gao X; Fox GE
    Nucleic Acids Res; 2005; 33(10):3145-53. PubMed ID: 15939932
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Pseudouridine-Free Escherichia coli Ribosomes.
    O'Connor M; Leppik M; Remme J
    J Bacteriol; 2018 Feb; 200(4):. PubMed ID: 29180357
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The ribosomal environment of tRNA: crosslinks to rRNA from positions 8 and 20:1 in the central fold of tRNA located at the A, P, or E site.
    Rinke-Appel J; Jünke N; Osswald M; Brimacombe R
    RNA; 1995 Dec; 1(10):1018-28. PubMed ID: 8595557
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Identification of two Escherichia coli pseudouridine synthases that show multisite specificity for 23S RNA.
    Huang L; Ku J; Pookanjanatavip M; Gu X; Wang D; Greene PJ; Santi DV
    Biochemistry; 1998 Nov; 37(45):15951-7. PubMed ID: 9843401
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The NMR structure of an internal loop from 23S ribosomal RNA differs from its structure in crystals of 50s ribosomal subunits.
    Shankar N; Kennedy SD; Chen G; Krugh TR; Turner DH
    Biochemistry; 2006 Oct; 45(39):11776-89. PubMed ID: 17002278
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Structure and function of the conserved 690 hairpin in Escherichia coli 16 S ribosomal RNA: analysis of the stem nucleotides.
    Morosyuk SV; Lee K; SantaLucia J; Cunningham PR
    J Mol Biol; 2000 Jun; 300(1):113-26. PubMed ID: 10864503
    [TBL] [Abstract][Full Text] [Related]  

  • 59. In vitro complementation analysis localizes 23S rRNA posttranscriptional modifications that are required for Escherichia coli 50S ribosomal subunit assembly and function.
    Green R; Noller HF
    RNA; 1996 Oct; 2(10):1011-21. PubMed ID: 8849777
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Mutations at position A960 of E. coli 23 S ribosomal RNA influence the structure of 5 S ribosomal RNA and the peptidyltransferase region of 23 S ribosomal RNA.
    Sergiev PV; Bogdanov AA; Dahlberg AE; Dontsova O
    J Mol Biol; 2000 Jun; 299(2):379-89. PubMed ID: 10860746
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.