These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 10773156)
1. Interaction of photosynthetic pigments with various organic solvents 2. Application of magnetic circular dichroism to bacteriochlorophyll a and light-harvesting complex 1. Umetsu M; Wang Z; Yoza K; Kobayashi M; Nozawa T Biochim Biophys Acta; 2000 Apr; 1457(3):106-17. PubMed ID: 10773156 [TBL] [Abstract][Full Text] [Related]
2. Magnetic circular dichroism properties of reaction center complexes isolated from the zinc-bacteriochlorophyll a-containing purple bacterium Acidiphilium rubrum. Mimuro M; Kobayashi M; Shimada K; Uezono K; Nozawa T Biochemistry; 2000 Apr; 39(14):4020-7. PubMed ID: 10747790 [TBL] [Abstract][Full Text] [Related]
3. Comparison of the structural requirements for bacteriochlorophyll binding in the core light-harvesting complexes of Rhodospirillum rubrum and Rhodospirillum sphaeroides using reconstitution methodology with bacteriochlorophyll analogs. Davis CM; Parkes-Loach PS; Cook CK; Meadows KA; Bandilla M; Scheer H; Loach PA Biochemistry; 1996 Mar; 35(9):3072-84. PubMed ID: 8608148 [TBL] [Abstract][Full Text] [Related]
4. Conformation of bacteriochlorophyll molecules in photosynthetic proteins from purple bacteria. Lapouge K; Näveke A; Gall A; Ivancich A; Seguin J; Scheer H; Sturgis JN; Mattioli TA; Robert B Biochemistry; 1999 Aug; 38(34):11115-21. PubMed ID: 10460167 [TBL] [Abstract][Full Text] [Related]
5. Excitation trap approach to analyze size and pigment-pigment coupling: reconstitution of LH1 antenna of Rhodobacter sphaeroides with Ni-substituted bacteriochlorophyll. Fiedor L; Leupold D; Teuchner K; Voigt B; Hunter CN; Scherz A; Scheer H Biochemistry; 2001 Mar; 40(12):3737-47. PubMed ID: 11297443 [TBL] [Abstract][Full Text] [Related]
6. Probing the bacteriochlorophyll binding site by reconstitution of the light-harvesting complex of Rhodospirillum rubrum with bacteriochlorophyll a analogues. Parkes-Loach PS; Michalski TJ; Bass WJ; Smith U; Loach PA Biochemistry; 1990 Mar; 29(12):2951-60. PubMed ID: 2110819 [TBL] [Abstract][Full Text] [Related]
7. Interaction of photosynthetic pigments with various organic solvents. Magnetic circular dichroism approach and application to chlorosomes. Umetsu M; Wang ZY; Kobayashi M; Nozawa T Biochim Biophys Acta; 1999 Jan; 1410(1):19-31. PubMed ID: 10076012 [TBL] [Abstract][Full Text] [Related]
8. Exchanging cofactors in the core antennae from purple bacteria: structure and properties of Zn-bacteriopheophytin-containing LH1. Lapouge K; Näveke A; Robert B; Scheer H; Sturgis JN Biochemistry; 2000 Feb; 39(5):1091-9. PubMed ID: 10653655 [TBL] [Abstract][Full Text] [Related]
9. Determination of the B820 subunit size of a bacterial core light-harvesting complex by small-angle neutron scattering. Wang ZY; Muraoka Y; Nagao M; Shibayama M; Kobayashi M; Nozawa T Biochemistry; 2003 Oct; 42(39):11555-60. PubMed ID: 14516207 [TBL] [Abstract][Full Text] [Related]
10. Spectroscopy and structure of bacteriochlorophyll dimers. I. Structural consequences of nonconservative circular dichroism spectra. Koolhaas MH; van der Zwan G; van Mourik F; van Grondelle R Biophys J; 1997 Apr; 72(4):1828-41. PubMed ID: 9083687 [TBL] [Abstract][Full Text] [Related]
11. The crystal structure of the light-harvesting complex II (B800-850) from Rhodospirillum molischianum. Koepke J; Hu X; Muenke C; Schulten K; Michel H Structure; 1996 May; 4(5):581-97. PubMed ID: 8736556 [TBL] [Abstract][Full Text] [Related]
12. Explaining the visible and near-infrared circular dichroism spectra of light-harvesting 1 complexes from purple bacteria: a modeling study. Georgakopoulou S; van Grondelle R; van der Zwan G J Phys Chem B; 2006 Feb; 110(7):3344-53. PubMed ID: 16494349 [TBL] [Abstract][Full Text] [Related]
13. [Role of bacteriochlorophyll in stabilization of the structure of the near-central and peripheral light-harvesting complexes from purple photosynthetic bacteria]. Solov'ev AA; Erokhin IuE Mikrobiologiia; 2013; 82(5):542-51. PubMed ID: 25509392 [TBL] [Abstract][Full Text] [Related]
14. Circular symmetry of the light-harvesting 1 complex from Rhodospirillum rubrum is not perturbed by interaction with the reaction center. Gerken U; Lupo D; Tietz C; Wrachtrup J; Ghosh R Biochemistry; 2003 Sep; 42(35):10354-60. PubMed ID: 12950162 [TBL] [Abstract][Full Text] [Related]
16. Intensity borrowing via excitonic couplings among soret and Q(y) transitions of bacteriochlorophylls in the pigment aggregates of chlorosomes, the light-harvesting antennae of green sulfur bacteria. Shibata Y; Tateishi S; Nakabayashi S; Itoh S; Tamiaki H Biochemistry; 2010 Sep; 49(35):7504-15. PubMed ID: 20701269 [TBL] [Abstract][Full Text] [Related]
17. Hydrogen bonding and circular dichroism of bacteriochlorophylls in the Rhodobacter capsulatus light-harvesting 2 complex altered by combinatorial mutagenesis. Hu Q; Sturgis JN; Robert B; Delagrave S; Youvan DC; Niederman RA Biochemistry; 1998 Jul; 37(28):10006-15. PubMed ID: 9665706 [TBL] [Abstract][Full Text] [Related]
18. Reconstitution of the B873 light-harvesting complex of Rhodospirillum rubrum from the separately isolated alpha- and beta-polypeptides and bacteriochlorophyll a. Parkes-Loach PS; Sprinkle JR; Loach PA Biochemistry; 1988 Apr; 27(8):2718-27. PubMed ID: 3135833 [TBL] [Abstract][Full Text] [Related]
19. In vitro reconstitution of the core and peripheral light-harvesting complexes of Rhodospirillum molischianum from separately isolated components. Todd JB; Parkes-Loach PS; Leykam JF; Loach PA Biochemistry; 1998 Dec; 37(50):17458-68. PubMed ID: 9860861 [TBL] [Abstract][Full Text] [Related]
20. Probing binding site of bacteriochlorophyll a and carotenoid in the reconstituted LH1 complex from Rhodospirillum rubrum S1 by Stark spectroscopy. Nakagawa K; Suzuki S; Fujii R; Gardiner AT; Cogdell RJ; Nango M; Hashimoto H Photosynth Res; 2008; 95(2-3):339-44. PubMed ID: 17912603 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]