These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 10773377)

  • 1. Improvement of stone fragmentation during shock-wave lithotripsy using a combined EH/PEAA shock-wave generator-in vitro experiments.
    Xi X; Zhong P
    Ultrasound Med Biol; 2000 Mar; 26(3):457-67. PubMed ID: 10773377
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent developments in SWL physics research.
    Zhong P; Xi X; Zhu S; Cocks FH; Preminger GM
    J Endourol; 1999 Nov; 13(9):611-7. PubMed ID: 10608511
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Suppression of large intraluminal bubble expansion in shock wave lithotripsy without compromising stone comminution: methodology and in vitro experiments.
    Zhong P; Zhou Y
    J Acoust Soc Am; 2001 Dec; 110(6):3283-91. PubMed ID: 11785829
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Innovations in shock wave lithotripsy technology: updates in experimental studies.
    Zhou Y; Cocks FH; Preminger GM; Zhong P
    J Urol; 2004 Nov; 172(5 Pt 1):1892-8. PubMed ID: 15540748
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shifting the Split Reflectors to Enhance Stone Fragmentation of Shock Wave Lithotripsy.
    Wang JC; Zhou Y
    Ultrasound Med Biol; 2016 Aug; 42(8):1876-89. PubMed ID: 27166016
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative measurements of acoustic emissions from cavitation at the surface of a stone in response to a lithotripter shock wave.
    Chitnis PV; Cleveland RO
    J Acoust Soc Am; 2006 Apr; 119(4):1929-32. PubMed ID: 16642802
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlled, forced collapse of cavitation bubbles for improved stone fragmentation during shock wave lithotripsy.
    Zhong P; Cocks FH; Cioanta I; Preminger GM
    J Urol; 1997 Dec; 158(6):2323-8. PubMed ID: 9366384
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tandem shock wave cavitation enhancement for extracorporeal lithotripsy.
    Loske AM; Prieto FE; Fernandez F; van Cauwelaert J
    Phys Med Biol; 2002 Nov; 47(22):3945-57. PubMed ID: 12476975
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modified shock waves for extracorporeal shock wave lithotripsy: a simulation based on the Gilmore formulation.
    Canseco G; de Icaza-Herrera M; Fernández F; Loske AM
    Ultrasonics; 2011 Oct; 51(7):803-10. PubMed ID: 21459398
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transient oscillation of cavitation bubbles near stone surface during electrohydraulic lithotripsy.
    Zhong P; Tong HL; Cocks FH; Preminger GM
    J Endourol; 1997 Feb; 11(1):55-61. PubMed ID: 9048300
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inertial cavitation and associated acoustic emission produced during electrohydraulic shock wave lithotripsy.
    Zhong P; Cioanta I; Cocks FH; Preminger GM
    J Acoust Soc Am; 1997 May; 101(5 Pt 1):2940-50. PubMed ID: 9165740
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of treatment strategy on stone comminution efficiency in shock wave lithotripsy.
    Zhou Y; Cocks FH; Preminger GM; Zhong P
    J Urol; 2004 Jul; 172(1):349-54. PubMed ID: 15201809
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Suppressing bubble shielding effect in shock wave lithotripsy by low intensity pulsed ultrasound.
    Wang JC; Zhou Y
    Ultrasonics; 2015 Jan; 55():65-74. PubMed ID: 25173067
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduction of bubble cavitation by modifying the diffraction wave from a lithotripter aperture.
    Zhou Y
    J Endourol; 2012 Aug; 26(8):1075-84. PubMed ID: 22332839
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlled cavitation to augment SWL stone comminution: mechanistic insights in vitro.
    Duryea AP; Roberts WW; Cain CA; Hall TL
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Feb; 60(2):301-9. PubMed ID: 23357904
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of stress waves and cavitation in stone comminution in shock wave lithotripsy.
    Zhu S; Cocks FH; Preminger GM; Zhong P
    Ultrasound Med Biol; 2002 May; 28(5):661-71. PubMed ID: 12079703
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiphase fluid-solid coupled analysis of shock-bubble-stone interaction in shockwave lithotripsy.
    Wang KG
    Int J Numer Method Biomed Eng; 2017 Oct; 33(10):. PubMed ID: 27885825
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Focused Ultrasound and Lithotripsy.
    Ikeda T; Yoshizawa S; Koizumi N; Mitsuishi M; Matsumoto Y
    Adv Exp Med Biol; 2016; 880():113-29. PubMed ID: 26486335
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamics of bubble oscillation in constrained media and mechanisms of vessel rupture in SWL.
    Zhong P; Zhou Y; Zhu S
    Ultrasound Med Biol; 2001 Jan; 27(1):119-34. PubMed ID: 11295278
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characteristics of the secondary bubble cluster produced by an electrohydraulic shock wave lithotripter.
    Zhou Y; Qin J; Zhong P
    Ultrasound Med Biol; 2012 Apr; 38(4):601-10. PubMed ID: 22390990
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.