These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 10774023)
1. Epoxidation of acyclic chiral allylic alcohols with peroxy acids: spiro or planar butterfly transition structures? A computational DFT answer. Freccero M; Gandolfi R; Sarzi-Amade M; Rastelli A J Org Chem; 2000 Apr; 65(7):2030-42. PubMed ID: 10774023 [TBL] [Abstract][Full Text] [Related]
2. A computational study of the hydroxy-group directivity in the peroxyformic acid epoxidation of the chiral allylic alcohol (Z)-3-methyl-3-penten-2-ol: control of threo diastereoselectivity through allylic strain and hydrogen bonding. Adam W; Bach RD; Dmitrenko O; Saha-Moller CR J Org Chem; 2000 Oct; 65(20):6715-28. PubMed ID: 11052124 [TBL] [Abstract][Full Text] [Related]
3. Facial selectivity in epoxidation of 2-cyclohexen-1-ol with peroxy acids. A computational DFT study. Freccero M; Gandolfi R; Sarzi-Amade M; Rastelli A J Org Chem; 2000 Dec; 65(26):8948-59. PubMed ID: 11149837 [TBL] [Abstract][Full Text] [Related]
4. Planar transition structures in the epoxidation of alkenes. A DFT study on the reaction of peroxyformic acid with norbornene derivatives. Freccero M; Gandolfi R; Sarzi-Amadè M; Rastelli A J Org Chem; 2002 Nov; 67(24):8519-27. PubMed ID: 12444634 [TBL] [Abstract][Full Text] [Related]
5. New paradigms for the peroxy acid epoxidation of CC double bonds: the role of the peroxy acid s-trans conformer and of the 1,2-H transfer in the epoxidation of cyclic allylic alcohols. Freccero M; Gandolfi R; Sarzi-Amadè M; Rastelli A J Org Chem; 2004 Oct; 69(22):7479-85. PubMed ID: 15497972 [TBL] [Abstract][Full Text] [Related]
6. Peroxy acid epoxidation of acyclic allylic alcohols. Competition between s-trans and s-cis peroxy acid conformers. Freccero M; Gandolfi R; Sarzi-Amadè M; Rastelli A J Org Chem; 2005 Nov; 70(23):9573-83. PubMed ID: 16268635 [TBL] [Abstract][Full Text] [Related]
7. A density-functional study of the mechanism for the diastereoselective epoxidation of chiral allylic alcohols by the titanium peroxy complexes. Cui M; Adam W; Shen JH; Luo XM; Tan XJ; Chen KX; Ji RY; Jiang HL J Org Chem; 2002 Mar; 67(5):1427-35. PubMed ID: 11871869 [TBL] [Abstract][Full Text] [Related]
8. Novel pathways for oxygen insertion into unactivated C-H bonds by dioxiranes. Transition structures for stepwise routes via radical pairs and comparison with the concerted pathway. Freccero M; Gandolfi R; Sarzi-Amadè M; Rastelli A J Org Chem; 2003 Feb; 68(3):811-23. PubMed ID: 12558403 [TBL] [Abstract][Full Text] [Related]
9. Hydroxyl radical recycling in isoprene oxidation driven by hydrogen bonding and hydrogen tunneling: the upgraded LIM1 mechanism. Peeters J; Müller JF; Stavrakou T; Nguyen VS J Phys Chem A; 2014 Sep; 118(38):8625-43. PubMed ID: 25010574 [TBL] [Abstract][Full Text] [Related]
10. Peroxy and alkoxy radicals from 2-methyl-3-buten-2-ol. Dibble TS; Pham T Phys Chem Chem Phys; 2006 Jan; 8(4):456-63. PubMed ID: 16482287 [TBL] [Abstract][Full Text] [Related]
11. Role of hydrogen bonding in the oxidation of thianthrene 5-oxide with peroxy acids. Erzen E; Koller J; Plesnicar B J Org Chem; 2001 Jul; 66(15):5155-62. PubMed ID: 11463269 [TBL] [Abstract][Full Text] [Related]
12. Allylic alcohol epoxidation by methyltrioxorhenium: a density functional study on the mechanism and the role of hydrogen bonding. Di Valentin C; Gandolfi R; Gisdakis P; Rösch N J Am Chem Soc; 2001 Mar; 123(10):2365-76. PubMed ID: 11456886 [TBL] [Abstract][Full Text] [Related]
13. Thermochemical properties and bond dissociation enthalpies of 3- to 5-member ring cyclic ether hydroperoxides, alcohols, and peroxy radicals: cyclic ether radical + (3)O(2) reaction thermochemistry. Auzmendi-Murua I; Bozzelli JW J Phys Chem A; 2014 May; 118(17):3147-67. PubMed ID: 24660891 [TBL] [Abstract][Full Text] [Related]
14. Regio- and Diastereoselective Catalytic Epoxidation of Acyclic Allylic Alcohols with Methyltrioxorhenium: A Mechanistic Comparison with Metal (Peroxy and Peroxo Complexes) and Nonmetal (Peracids and Dioxirane) Oxidants. Adam W; Mitchell CM; Saha-Möller CR J Org Chem; 1999 May; 64(10):3699-3707. PubMed ID: 11674500 [TBL] [Abstract][Full Text] [Related]
15. Computational modeling of a stereoselective epoxidation: reaction of carene with peroxyformic acid. Koskowich SM; Johnson WC; Paley RS; Rablen PR J Org Chem; 2008 May; 73(9):3492-6. PubMed ID: 18363366 [TBL] [Abstract][Full Text] [Related]
16. The existence of secondary orbital interactions. Wannere CS; Paul A; Herges R; Houk KN; Schaefer HF; von Ragué Schleyer P J Comput Chem; 2007 Jan; 28(1):344-61. PubMed ID: 17109435 [TBL] [Abstract][Full Text] [Related]
17. Thermochemical properties, DeltafH degrees (298), S degrees (298), and Cp degrees (T), for n-butyl and n-pentyl hydroperoxides and the alkyl and peroxy radicals, transition states, and kinetics for intramolecular hydrogen shift reactions of the peroxy radicals. Zhu L; Bozzelli JW; Kardos LM J Phys Chem A; 2007 Jul; 111(28):6361-77. PubMed ID: 17585739 [TBL] [Abstract][Full Text] [Related]
18. Rearrangement of 3-deoxy-D-erythro-hexos-2-ulose in aqueous solution: NMR evidence of intramolecular 1,2-hydrogen transfer. Zhang W; Carmichael I; Serianni AS J Org Chem; 2011 Oct; 76(20):8151-8. PubMed ID: 21793547 [TBL] [Abstract][Full Text] [Related]
20. DFT calculations of the anomeric and exo-anomeric effect of the hydroperoxy and peroxy groups. Kośnik W; Bocian W; Chmielewski M; Tvaroska I Carbohydr Res; 2008 Jul; 343(9):1463-72. PubMed ID: 18456248 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]