These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 10774558)

  • 1. Use of a windows program for simulation of the progress curves of reactants and intermediates involved in enzyme-catalyzed reactions.
    García-Sevilla F; Garrido-del Solo C; Duggleby RG; García-Cánovas F; Peyró R; Varón R
    Biosystems; 2000 Jan; 54(3):151-64. PubMed ID: 10774558
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of progress curves for enzyme-catalyzed reactions: application to unstable enzymes, coupled reactions and transient-state kinetics.
    Duggleby RG
    Biochim Biophys Acta; 1994 Apr; 1205(2):268-74. PubMed ID: 8155708
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct determination of enzyme kinetic parameters from single reactions using a new progress curve analysis tool.
    Bäuerle F; Zotter A; Schreiber G
    Protein Eng Des Sel; 2017 Mar; 30(3):149-156. PubMed ID: 27744288
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Query generation to search for inhibitors of enzymatic reactions.
    Reitz M; von Homeyer A; Gasteiger J
    J Chem Inf Model; 2006; 46(6):2333-41. PubMed ID: 17125177
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hybrid quantum and classical methods for computing kinetic isotope effects of chemical reactions in solutions and in enzymes.
    Gao J; Major DT; Fan Y; Lin YL; Ma S; Wong KY
    Methods Mol Biol; 2008; 443():37-62. PubMed ID: 18446281
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generalized theoretical and practical treatment of the kinetics of an enzyme-catalyzed reaction in the presence of an enzyme equimolar irreversible inhibitor.
    Golicnik M; Stojan J
    J Chem Inf Comput Sci; 2003; 43(5):1486-93. PubMed ID: 14502482
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computerized evaluation of mean residence times in multicompartmental linear system and pharmacokinetics.
    Villalba JM; Barbero AJ; Diaz-Sierra R; Arribas E; Garcia-Meseguer MJ; Garcia-Sevilla F; Garcia-Moreno M; De Labra JA; Varon R
    J Comput Chem; 2011 Apr; 32(5):915-31. PubMed ID: 20960438
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simplified approach for developing the rate expressions for enzyme-catalyzed reactions.
    Thilakavathi M; Basak T; Panda T
    Biotechnol Lett; 2006 Dec; 28(23):1889-94. PubMed ID: 17072530
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in binding of hydrogen ions in enzyme-catalyzed reactions.
    Alberty RA
    Biophys Chem; 2007 Feb; 125(2-3):328-33. PubMed ID: 17011697
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How enzymes work: analysis by modern rate theory and computer simulations.
    Garcia-Viloca M; Gao J; Karplus M; Truhlar DG
    Science; 2004 Jan; 303(5655):186-95. PubMed ID: 14716003
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational approaches: reaction trajectories, structures, and atomic motions. Enzyme reactions and proficiency.
    Bruice TC
    Chem Rev; 2006 Aug; 106(8):3119-39. PubMed ID: 16895321
    [No Abstract]   [Full Text] [Related]  

  • 12. Analysis of progress curves by simulations generated by numerical integration.
    Zimmerle CT; Frieden C
    Biochem J; 1989 Mar; 258(2):381-7. PubMed ID: 2705989
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical QM/MM studies of enzymatic pericyclic reactions.
    Martí S; Andrés J; Moliner V; Silla E; Tuñón I; Bertrán J
    Interdiscip Sci; 2010 Mar; 2(1):115-31. PubMed ID: 20640801
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fitting integrated enzyme rate equations to progress curves with the use of a weighting matrix.
    Franco R; Aran JM; Canela EI
    Biochem J; 1991 Mar; 274 ( Pt 2)(Pt 2):509-11. PubMed ID: 2006914
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extracting Kinetic Isotope Effects From a Global Analysis of Reaction Progress Curves.
    Hay S
    Methods Enzymol; 2017; 596():85-111. PubMed ID: 28911785
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theozymes and compuzymes: theoretical models for biological catalysis.
    Tantillo DJ; Chen J; Houk KN
    Curr Opin Chem Biol; 1998 Dec; 2(6):743-50. PubMed ID: 9914196
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transient state kinetics tutorial using the kinetics simulation program, KINSIM.
    Wachsstock DH; Pollard TD
    Biophys J; 1994 Sep; 67(3):1260-73. PubMed ID: 7811941
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Utilization of integrated Michaelis-Menten equations for enzyme inhibition diagnosis and determination of kinetic constants using Solver supplement of Microsoft Office Excel.
    Bezerra RM; Fraga I; Dias AA
    Comput Methods Programs Biomed; 2013 Jan; 109(1):26-31. PubMed ID: 23021091
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative analysis of the time courses of enzyme-catalyzed reactions.
    Duggleby RG
    Methods; 2001 Jun; 24(2):168-74. PubMed ID: 11384191
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Global kinetic explorer: a new computer program for dynamic simulation and fitting of kinetic data.
    Johnson KA; Simpson ZB; Blom T
    Anal Biochem; 2009 Apr; 387(1):20-9. PubMed ID: 19154726
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.