BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 10774783)

  • 1. EDHF-mediated relaxation in rat gastric small arteries: influence of ouabain/Ba2+ and relation to potassium ions.
    Van de Voorde J; Vanheel B
    J Cardiovasc Pharmacol; 2000 Apr; 35(4):543-8. PubMed ID: 10774783
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential actions of anandamide, potassium ions and endothelium-derived hyperpolarizing factor in guinea-pig basilar artery.
    Zygmunt PM; Sørgård M; Petersson J; Johansson R; Högestätt ED
    Naunyn Schmiedebergs Arch Pharmacol; 2000 May; 361(5):535-42. PubMed ID: 10832608
    [TBL] [Abstract][Full Text] [Related]  

  • 3. K+ is an endothelium-derived hyperpolarizing factor in rat arteries.
    Edwards G; Dora KA; Gardener MJ; Garland CJ; Weston AH
    Nature; 1998 Nov; 396(6708):269-72. PubMed ID: 9834033
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparison of EDHF-mediated and anandamide-induced relaxations in the rat isolated mesenteric artery.
    White R; Hiley CR
    Br J Pharmacol; 1997 Dec; 122(8):1573-84. PubMed ID: 9422801
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of inhibitors of small- and intermediate-conductance calcium-activated potassium channels, inwardly-rectifying potassium channels and Na(+)/K(+) ATPase on EDHF relaxations in the rat hepatic artery.
    Andersson DA; Zygmunt PM; Movahed P; Andersson TL; Högestätt ED
    Br J Pharmacol; 2000 Apr; 129(7):1490-6. PubMed ID: 10742306
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potassium- and acetylcholine-induced vasorelaxation in mice lacking endothelial nitric oxide synthase.
    Ding H; Kubes P; Triggle C
    Br J Pharmacol; 2000 Mar; 129(6):1194-200. PubMed ID: 10725268
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Na-K-ATPase is a target for an EDHF displaying characteristics similar to potassium ions in the porcine renal interlobar artery.
    Büssemaker E; Wallner C; Fisslthaler B; Fleming I
    Br J Pharmacol; 2002 Nov; 137(5):647-54. PubMed ID: 12381678
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Further investigation of endothelium-derived hyperpolarizing factor (EDHF) in rat hepatic artery: studies using 1-EBIO and ouabain.
    Edwards G; Gardener MJ; Feletou M; Brady G; Vanhoutte PM; Weston AH
    Br J Pharmacol; 1999 Nov; 128(5):1064-70. PubMed ID: 10556944
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potassium potently relaxes small rat skeletal muscle arteries.
    De Clerck I; Boussery K; Pannier JL; Van De Voorde J
    Med Sci Sports Exerc; 2003 Dec; 35(12):2005-12. PubMed ID: 14652495
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Possible role for K+ in endothelium-derived hyperpolarizing factor-linked dilatation in rat middle cerebral artery.
    McNeish AJ; Dora KA; Garland CJ
    Stroke; 2005 Jul; 36(7):1526-32. PubMed ID: 15933259
    [TBL] [Abstract][Full Text] [Related]  

  • 11. KATP-channel-induced vasodilation is modulated by the Na,K-pump activity in rabbit coronary small arteries.
    Glavind-Kristensen M; Matchkov V; Hansen VB; Forman A; Nilsson H; Aalkjaer C
    Br J Pharmacol; 2004 Dec; 143(7):872-80. PubMed ID: 15504751
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of gap junctions in endothelium-derived hyperpolarizing factor responses and mechanisms of K(+)-relaxation.
    Harris D; Martin PE; Evans WH; Kendall DA; Griffith TM; Randall MD
    Eur J Pharmacol; 2000 Aug; 402(1-2):119-28. PubMed ID: 10940365
    [TBL] [Abstract][Full Text] [Related]  

  • 13. K+ currents underlying the action of endothelium-derived hyperpolarizing factor in guinea-pig, rat and human blood vessels.
    Coleman HA; Tare M; Parkington HC
    J Physiol; 2001 Mar; 531(Pt 2):359-73. PubMed ID: 11230509
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Endothelium-dependent vasorelaxation independent of nitric oxide and K(+) release in isolated renal arteries of rats.
    Jiang F; Dusting GJ
    Br J Pharmacol; 2001 Apr; 132(7):1558-64. PubMed ID: 11264250
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of potassium channels in endothelium-dependent relaxation resistant to nitroarginine in the rat hepatic artery.
    Zygmunt PM; Högestätt ED
    Br J Pharmacol; 1996 Apr; 117(7):1600-6. PubMed ID: 8730760
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potassium does not mimic EDHF in rat mesenteric arteries.
    Doughty JM; Boyle JP; Langton PD
    Br J Pharmacol; 2000 Jul; 130(5):1174-82. PubMed ID: 10882404
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potentiation of EDHF-mediated relaxation by chloride channel blockers.
    Yang C; Kwan YW; Chan SW; Lee SM; Leung GP
    Acta Pharmacol Sin; 2010 Oct; 31(10):1303-11. PubMed ID: 20835269
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Endothelium-derived hyperpolarizing factor : identification and mechanisms of action in human subcutaneous resistance arteries.
    Coats P; Johnston F; MacDonald J; McMurray JJ; Hillier C
    Circulation; 2001 Mar; 103(12):1702-8. PubMed ID: 11274000
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An evaluation of potassium ions as endothelium-derived hyperpolarizing factor in porcine coronary arteries.
    Bény JL; Schaad O
    Br J Pharmacol; 2000 Nov; 131(5):965-73. PubMed ID: 11053218
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulation of endothelial cell KCa3.1 channels during endothelium-derived hyperpolarizing factor signaling in mesenteric resistance arteries.
    Dora KA; Gallagher NT; McNeish A; Garland CJ
    Circ Res; 2008 May; 102(10):1247-55. PubMed ID: 18403729
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.