BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 10775061)

  • 1. Fluorescence study on the interaction of a multiple antigenic peptide from hepatitis A virus with lipid vesicles.
    Ortiz A; Cajal Y; Haro I; Reig F; Alsina MA
    Biopolymers; 2000 May; 53(6):455-66. PubMed ID: 10775061
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Membrane fusion induced by a lipopeptidic epitope from VP3 capside protein of hepatitis A virus.
    Chávez A; Pujol M; Alsina MA; Cajal Y
    Luminescence; 2001; 16(2):135-43. PubMed ID: 11312539
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction study of peptide from VP3 capsid protein of hepatitis A virus through monolayers and fluorescence spectroscopy.
    Sospedra P; Prat J; Haro I; Mestres C; Busquets MA
    Luminescence; 2001; 16(2):103-7. PubMed ID: 11312535
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of chain length of HAV-VP3 synthetic peptides on its interaction with biomembrane models.
    Sospedra P; Muñoz M; García M; Alsina MA; Mestres C; Haro I
    Biopolymers; 2000 Dec; 54(7):477-88. PubMed ID: 10984400
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Membrane fusion by an RGD-containing sequence from the core protein VP3 of hepatitis A virus and the RGA-analogue: implications for viral infection.
    Chávez A; Pujol M; Haro I; Alsina MA; Cajal Y
    Biopolymers; 2001 Jan; 58(1):63-77. PubMed ID: 11072230
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein transduction domains of HIV-1 and SIV TAT interact with charged lipid vesicles. Binding mechanism and thermodynamic analysis.
    Ziegler A; Blatter XL; Seelig A; Seelig J
    Biochemistry; 2003 Aug; 42(30):9185-94. PubMed ID: 12885253
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phospholipid-model membrane interactions with branched polypeptide conjugates of a hepatitis A virus peptide epitope.
    Nagy IB; Alsina MA; Haro I; Reig F; Hudecz F
    Bioconjug Chem; 2000; 11(1):30-8. PubMed ID: 10639082
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A fluorescence spectroscopy study on the interactions of the TAT-PTD peptide with model lipid membranes.
    Tiriveedhi V; Butko P
    Biochemistry; 2007 Mar; 46(12):3888-95. PubMed ID: 17338552
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermodynamics of the membrane insertion process of the M13 procoat protein, a lipid bilayer traversing protein containing a leader sequence.
    Soekarjo M; Eisenhawer M; Kuhn A; Vogel H
    Biochemistry; 1996 Jan; 35(4):1232-41. PubMed ID: 8573578
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of a laminin amphiphatic sequence on DPPC ordered bilayers.
    Reig F; Juvé A; Ortiz A; Sospedra P; Alsina MA
    Luminescence; 2005; 20(4-5):326-30. PubMed ID: 16134200
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physical properties and surface activity of surfactant-like membranes containing the cationic and hydrophobic peptide KL4.
    Sáenz A; Cañadas O; Bagatolli LA; Johnson ME; Casals C
    FEBS J; 2006 Jun; 273(11):2515-27. PubMed ID: 16704424
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An animal virus-derived peptide switches membrane morphology: possible relevance to nodaviral transfection processes.
    Janshoff A; Bong DT; Steinem C; Johnson JE; Ghadiri MR
    Biochemistry; 1999 Apr; 38(17):5328-36. PubMed ID: 10220319
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermodynamic analysis of the effect of cholesterol on dipalmitoylphosphatidylcholine lipid membranes.
    Bennett WF; MacCallum JL; Tieleman DP
    J Am Chem Soc; 2009 Feb; 131(5):1972-8. PubMed ID: 19146400
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Consequences of nonlytic membrane perturbation to the translocation of the cell penetrating peptide pep-1 in lipidic vesicles.
    Henriques ST; Castanho MA
    Biochemistry; 2004 Aug; 43(30):9716-24. PubMed ID: 15274626
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A spectroscopic study of the membrane interaction of the antimicrobial peptide Pleurocidin.
    Mason AJ; Chotimah IN; Bertani P; Bechinger B
    Mol Membr Biol; 2006; 23(2):185-94. PubMed ID: 16754361
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The cyclic antimicrobial peptide RTD-1 induces stabilized lipid-peptide domains more efficiently than its open-chain analogue.
    Abuja PM; Zenz A; Trabi M; Craik DJ; Lohner K
    FEBS Lett; 2004 May; 566(1-3):301-6. PubMed ID: 15147913
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermodynamics of melittin binding to lipid bilayers. Aggregation and pore formation.
    Klocek G; Schulthess T; Shai Y; Seelig J
    Biochemistry; 2009 Mar; 48(12):2586-96. PubMed ID: 19173655
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction with phospholipid mono- and bilayers of HAV-VP3 (102-121) sequence by using spectroscopic techniques.
    Garcia M; Pujol M; Reig F; Alsina MA; Haro I
    Biomed Chromatogr; 1997; 11(2):121-3. PubMed ID: 9137782
    [No Abstract]   [Full Text] [Related]  

  • 19. Hepatitis A Synthetic Peptide VP3(110-121) Miscibility with Dipalmitoylphosphatidylcholine, Dipalmitoylphosphatidylglycerol, and Stearylamine Monolayers.
    Sospedra P; Alsina MA; Espina M; Reig F; Haro I; Mestres C
    J Colloid Interface Sci; 2000 Jan; 221(2):230-235. PubMed ID: 10631024
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Poly-l-lysines and poly-l-arginines induce leakage of negatively charged phospholipid vesicles and translocate through the lipid bilayer upon electrostatic binding to the membrane.
    Reuter M; Schwieger C; Meister A; Karlsson G; Blume A
    Biophys Chem; 2009 Sep; 144(1-2):27-37. PubMed ID: 19560854
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.