These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 10775344)

  • 1. Effects of proteolysis and mechanism of gel weakening in heat-induced gelation of fish myosin.
    Visessanguan W; An H
    J Agric Food Chem; 2000 Apr; 48(4):1024-32. PubMed ID: 10775344
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physicochemical changes and mechanism of heat-induced gelation of arrowtooth flounder myosin.
    Visessanguan W; Ogawa M; Nakai S; An H
    J Agric Food Chem; 2000 Apr; 48(4):1016-23. PubMed ID: 10775343
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gelation of chicken pectoralis major myosin and heat-denatured beta-lactoglobulin.
    Vittayanont M; Steffe JF; Flegler SL; Smith DM
    J Agric Food Chem; 2003 Jan; 51(3):760-5. PubMed ID: 12537454
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heat-induced gelation of chicken Pectoralis major myosin and beta-lactoglobulin.
    Vittayanont M; Vega-Warner V; Steffe JF; Smith DM
    J Agric Food Chem; 2001 Mar; 49(3):1587-94. PubMed ID: 11312900
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Curtailing Oxidation-Induced Loss of Myosin Gelling Potential by Pyrophosphate Through Shielding the S1 Subfragment.
    Liu Z; True AD; Xiong YL
    J Food Sci; 2015 Jul; 80(7):C1468-75. PubMed ID: 25990830
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rheological properties of fast skeletal myosin rod and light meromyosin from walleye pollack and white croaker: contribution of myosin fragments to thermal gel formation.
    Fukushima H; Satoh Y; Yoon SH; Togashi M; Nakaya M; Watabe S
    J Agric Food Chem; 2005 Nov; 53(23):9193-8. PubMed ID: 16277422
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Studies on fish and pork paste gelation by dynamic rheology and circular dichroism.
    Liu R; Zhao SM; Xiong SB; Xie BJ; Liu HM
    J Food Sci; 2007 Sep; 72(7):E399-403. PubMed ID: 17995642
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biochemical and conformational changes of myosin purified from Pacific sardine at various pHs.
    Park JD; Yongsawatdigul J; Choi YJ; Park JW
    J Food Sci; 2008 Apr; 73(3):C191-7. PubMed ID: 18387098
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermal denaturation and aggregation properties of Atlantic salmon myofibrils and myosin from white and red muscles.
    Lefevre F; Fauconneau B; Thompson JW; Gill TA
    J Agric Food Chem; 2007 Jun; 55(12):4761-70. PubMed ID: 17497872
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal gelation profile changes in reconstituted actomyosin due to storage under a high salt concentration and low temperature.
    Tanji H; Ikeuchi Y; Yoshizawa M; Suzuki A
    Biosci Biotechnol Biochem; 1997 May; 61(5):787-93. PubMed ID: 9178554
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rheological properties of myosin-gelatin mixtures.
    Yang YL; Zhou GH; Xu XL; Wang Y
    J Food Sci; 2007 Jun; 72(5):C270-5. PubMed ID: 17995714
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Denaturation and aggregation of myosin from two bovine muscle types.
    Vega-Warner V; Smith DM
    J Agric Food Chem; 2001 Feb; 49(2):906-12. PubMed ID: 11262048
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rheological and biochemical characterization of salmon myosin as affected by constant heating rate.
    Reed ZH; Park JW
    J Food Sci; 2011 Mar; 76(2):C343-9. PubMed ID: 21535755
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of nucleotide on skeletal muscle myosin unfolding in myofibrils by DSC.
    Lörinczy D; Belagyi J
    Biochem Biophys Res Commun; 1995 Dec; 217(2):592-8. PubMed ID: 7503740
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermally induced unfolding of Acanthamoeba myosin II and skeletal muscle myosin: nucleotide effects.
    Zolkiewski M; Redowicz MJ; Korn ED; Ginsburg A
    Arch Biochem Biophys; 1995 Apr; 318(1):207-14. PubMed ID: 7726563
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heat-induced gel formation by soy proteins at neutral pH.
    Renkema JM; van Vliet T
    J Agric Food Chem; 2002 Mar; 50(6):1569-73. PubMed ID: 11879038
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal unfolding of Acanthamoeba myosin II and skeletal muscle myosin.
    Zolkiewski M; Redowicz MJ; Korn ED; Ginsburg A
    Biophys Chem; 1996 Apr; 59(3):365-71. PubMed ID: 8672724
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimizing the formation of myosin/high-density lipoprotein composite gels: PH-dependent effects on heat-induced aggregation.
    Zhang Y; Lyu H; Wang Y; Bai G; Wang J; Teng W; Wang W; Cao J
    Int J Biol Macromol; 2024 May; 268(Pt 2):131786. PubMed ID: 38657927
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid heating of Alaska pollock and chicken breast myofibrillar proteins as affecting gel rheological properties.
    Liu W; Stevenson CD; Lanier TC
    J Food Sci; 2013 Jul; 78(7):C971-7. PubMed ID: 23646872
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermophysical characterization of tilapia myosin and its subfragments.
    Reed ZH; Park JW
    J Food Sci; 2011 Sep; 76(7):C1050-5. PubMed ID: 22417542
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.