These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 10775385)

  • 41. Influence of phenolic compounds on the sensorial perception and volatility of red wine esters in model solution: an insight at the molecular level.
    Lorrain B; Tempere S; Iturmendi N; Moine V; de Revel G; Teissedre PL
    Food Chem; 2013 Sep; 140(1-2):76-82. PubMed ID: 23578617
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Organosulfate formation in biogenic secondary organic aerosol.
    Surratt JD; Gómez-González Y; Chan AW; Vermeylen R; Shahgholi M; Kleindienst TE; Edney EO; Offenberg JH; Lewandowski M; Jaoui M; Maenhaut W; Claeys M; Flagan RC; Seinfeld JH
    J Phys Chem A; 2008 Sep; 112(36):8345-78. PubMed ID: 18710205
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Thermodynamic characterization of acacia gum-beta-lactoglobulin complex coacervation.
    Aberkane L; Jasniewski J; Gaiani C; Scher J; Sanchez C
    Langmuir; 2010 Aug; 26(15):12523-33. PubMed ID: 20586462
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Dual solid-phase and stir bar sorptive extraction combined with gas chromatography-mass spectrometry analysis provides a suitable tool for assaying limonene-derived mint aroma compounds in red wine.
    Picard M; Franc C; de Revel G; Marchand S
    Anal Chim Acta; 2018 Feb; 1001():168-178. PubMed ID: 29291800
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Transfer of aroma compounds through the lipidic-aqueous interface in a complex system.
    Seuvre AM; Espinosa Diaz MA; Voilley A
    J Agric Food Chem; 2002 Feb; 50(5):1106-10. PubMed ID: 11853490
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Modeling the partition of volatile aroma compounds from a cloud emulsion.
    Carey ME; Asquith T; Linforth RS; Taylor AJ
    J Agric Food Chem; 2002 Mar; 50(7):1985-90. PubMed ID: 11902944
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Energetics of β-lactoglobulin-flavor compounds interactions.
    Grinberg VY; Burova TV; Grinberg NV; Dubovik AS; Plashchina IG; Khokhlov AR
    Food Res Int; 2024 Feb; 177():113855. PubMed ID: 38225130
    [TBL] [Abstract][Full Text] [Related]  

  • 48. beta-Lactoglobulin binding properties during its folding changes studied by fluorescence spectroscopy.
    Dufour E; Genot C; Haertlé T
    Biochim Biophys Acta; 1994 Mar; 1205(1):105-12. PubMed ID: 8142474
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Development, physicochemical characterization and cytotoxicity of selenium nanoparticles stabilized by beta-lactoglobulin.
    Zhang J; Teng Z; Yuan Y; Zeng QZ; Lou Z; Lee SH; Wang Q
    Int J Biol Macromol; 2018 Feb; 107(Pt B):1406-1413. PubMed ID: 29017880
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Binding of heme-CO to bovine and porcine beta-lactoglobulins.
    Marden MC; Dufour E; Christova P; Huang Y; Leclerc-L'Hostis E; Haertlé T
    Arch Biochem Biophys; 1994 Jun; 311(2):258-62. PubMed ID: 8203888
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Comparison of bovine and porcine beta-lactoglobulin: a mass spectrometric analysis.
    Invernizzi G; Samalikova M; Brocca S; Lotti M; Molinari H; Grandori R
    J Mass Spectrom; 2006 Jun; 41(6):717-27. PubMed ID: 16770828
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Olfactory discrimination ability of human subjects for ten pairs of enantiomers.
    Laska M; Teubner P
    Chem Senses; 1999 Apr; 24(2):161-70. PubMed ID: 10321817
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effects of electrolyte concentration and pH on the coalescence stability of beta-lactoglobulin emulsions: experiment and interpretation.
    Tcholakova S; Denkov ND; Sidzhakova D; Ivanov IB; Campbell B
    Langmuir; 2005 May; 21(11):4842-55. PubMed ID: 15896022
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Computational and experimental approaches assess the interactions between bovine beta-lactoglobulin and synthetic compounds of pharmacological interest.
    Eberini I; Rocco AG; Mantegazza M; Gianazza E; Baroni A; Vilardo MC; Donghi D; Galliano M; Beringhelli T
    J Mol Graph Model; 2008 Feb; 26(6):1004-13. PubMed ID: 17905618
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Stabilization of aroma compounds through sorption-release by packaging polymers.
    Reynier A; Dole P; Fricoteaux F; Saillard P; Feigenbaum AE
    J Agric Food Chem; 2004 Sep; 52(18):5653-62. PubMed ID: 15373406
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Evaluation of the anti-inflammatory, anti-catabolic and pro-anabolic effects of E-caryophyllene, myrcene and limonene in a cell model of osteoarthritis.
    Rufino AT; Ribeiro M; Sousa C; Judas F; Salgueiro L; Cavaleiro C; Mendes AF
    Eur J Pharmacol; 2015 Mar; 750():141-50. PubMed ID: 25622554
    [TBL] [Abstract][Full Text] [Related]  

  • 57. pH-Dependent aggregation and disaggregation of native β-lactoglobulin in low salt.
    Yan Y; Seeman D; Zheng B; Kizilay E; Xu Y; Dubin PL
    Langmuir; 2013 Apr; 29(14):4584-93. PubMed ID: 23458495
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Inhibition of rat mammary carcinogenesis by monoterpenoids.
    Russin WA; Hoesly JD; Elson CE; Tanner MA; Gould MN
    Carcinogenesis; 1989 Nov; 10(11):2161-4. PubMed ID: 2509095
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Aroma retention in sol-gel-made silica particles.
    Veith SR; Pratsinis SE; Perren M
    J Agric Food Chem; 2004 Sep; 52(19):5964-71. PubMed ID: 15366850
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Volatile organic components of fresh leaves as indicators of indigenous and cultivated citrus species in Taiwan.
    Lin SY; Roan SF; Lee CL; Chen IZ
    Biosci Biotechnol Biochem; 2010; 74(4):806-11. PubMed ID: 20378980
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.