These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 10775388)
21. Microclimate influence on mineral and metabolic profiles of grape berries. Pereira GE; Gaudillere JP; Pieri P; Hilbert G; Maucourt M; Deborde C; Moing A; Rolin D J Agric Food Chem; 2006 Sep; 54(18):6765-75. PubMed ID: 16939338 [TBL] [Abstract][Full Text] [Related]
22. Development of C13-norisoprenoids, carotenoids and other volatile compounds in Vitis vinifera L. Cv. Pinot noir grapes. Yuan F; Qian MC Food Chem; 2016 Feb; 192():633-41. PubMed ID: 26304393 [TBL] [Abstract][Full Text] [Related]
23. Evolution of aroma and phenolic compounds during ripening of 'superior seedless' grapes. Hellín P; Manso A; Flores P; Fenoll J J Agric Food Chem; 2010 May; 58(10):6334-40. PubMed ID: 20438135 [TBL] [Abstract][Full Text] [Related]
24. Partial Solar Radiation Exclusion with Color Shade Nets Reduces the Degradation of Organic Acids and Flavonoids of Grape Berry (Vitis vinifera L.). Martínez-Lüscher J; Chen CCL; Brillante L; Kurtural SK J Agric Food Chem; 2017 Dec; 65(49):10693-10702. PubMed ID: 29141407 [TBL] [Abstract][Full Text] [Related]
25. High spatial resolution dataset of grapevine yield components at the within-field level. Oger B; Zhang Y; Gras JP; Valloo Y; Faure P; Brunel G; Tisseyre B Data Brief; 2023 Oct; 50():109580. PubMed ID: 37780465 [TBL] [Abstract][Full Text] [Related]
26. Targeted and untargeted high resolution mass approach for a putative profiling of glycosylated simple phenols in hybrid grapes. Barnaba C; Dellacassa E; Nicolini G; Giacomelli M; Roman Villegas T; Nardin T; Larcher R Food Res Int; 2017 Aug; 98():20-33. PubMed ID: 28610729 [TBL] [Abstract][Full Text] [Related]
27. Influence of natural variation in berry size on the volatile profiles of Vitis vinifera L. cv. Merlot and Cabernet Gernischt grapes. Xie S; Tang Y; Wang P; Song C; Duan B; Zhang Z; Meng J PLoS One; 2018; 13(9):e0201374. PubMed ID: 30231031 [TBL] [Abstract][Full Text] [Related]
28. Accumulation of guaiacol glycoconjugates in fruit, leaves and shoots of Vitis vinifera cv. Monastrell following foliar applications of guaiacol or oak extract to grapevines. Pardo-Garcia AI; Wilkinson KL; Culbert JA; Lloyd NDR; Alonso GL; Salinas MR Food Chem; 2017 Feb; 217():782-789. PubMed ID: 27664698 [TBL] [Abstract][Full Text] [Related]
29. Metabolism of geraniol in grape berry mesocarp of Vitis vinifera L. cv. Scheurebe: demonstration of stereoselective reduction, E/Z-isomerization, oxidation and glycosylation. Luan F; Mosandl A; Münch A; Wüst M Phytochemistry; 2005 Feb; 66(3):295-303. PubMed ID: 15680986 [TBL] [Abstract][Full Text] [Related]
30. Pinot noir wine volatile and anthocyanin composition under different levels of vine fruit zone leaf removal. Feng H; Skinkis PA; Qian MC Food Chem; 2017 Jan; 214():736-744. PubMed ID: 27507532 [TBL] [Abstract][Full Text] [Related]
31. Effects of UV exclusion on the physiology and phenolic composition of leaves and berries of Vitis vinifera cv. Graciano. Del-Castillo-Alonso MÁ; Diago MP; Monforte L; Tardaguila J; Martínez-Abaigar J; Núñez-Olivera E J Sci Food Agric; 2015 Jan; 95(2):409-16. PubMed ID: 24820651 [TBL] [Abstract][Full Text] [Related]
32. 'Fortified' wines volatile composition: Effect of different postharvest dehydration conditions of wine grapes cv. Malvasia moscata (Vitis vinifera L.). Urcan DE; Giacosa S; Torchio F; Río Segade S; Raimondi S; Bertolino M; Gerbi V; Pop N; Rolle L Food Chem; 2017 Mar; 219():346-356. PubMed ID: 27765237 [TBL] [Abstract][Full Text] [Related]
33. Effect of harvest time on table grape quality during on-vine storage. Piazzolla F; Pati S; Amodio ML; Colelli G J Sci Food Agric; 2016 Jan; 96(1):131-9. PubMed ID: 25565569 [TBL] [Abstract][Full Text] [Related]
34. Detailed characterization of glycosylated sensory-active volatile phenols in smoke-exposed grapes and wine. Noestheden M; Dennis EG; Romero-Montalvo E; DiLabio GA; Zandberg WF Food Chem; 2018 Sep; 259():147-156. PubMed ID: 29680037 [TBL] [Abstract][Full Text] [Related]
35. Relationship between Agronomic Parameters, Phenolic Composition of Grape Skin, and Texture Properties of Vitis vinifera L. cv. Tempranillo. García-Estévez I; Andrés-García P; Alcalde-Eon C; Giacosa S; Rolle L; Rivas-Gonzalo JC; Quijada-Morín N; Escribano-Bailón MT J Agric Food Chem; 2015 Sep; 63(35):7663-9. PubMed ID: 25916251 [TBL] [Abstract][Full Text] [Related]
36. Comparison of fortified, sfursat, and passito wines produced from fresh and dehydrated grapes of aromatic black cv. Moscato nero (Vitis vinifera L.). Ossola C; Giacosa S; Torchio F; Río Segade S; Caudana A; Cagnasso E; Gerbi V; Rolle L Food Res Int; 2017 Aug; 98():59-67. PubMed ID: 28610733 [TBL] [Abstract][Full Text] [Related]
37. Evolution of volatile compounds during the development of cabernet sauvignon grapes (Vitis vinifera L.). Kalua CM; Boss PK J Agric Food Chem; 2009 May; 57(9):3818-30. PubMed ID: 19309150 [TBL] [Abstract][Full Text] [Related]
38. Applied GA Berli FJ; Alonso R; Pharis RP; Bottini R J Sci Food Agric; 2022 May; 102(7):2950-2959. PubMed ID: 34767265 [TBL] [Abstract][Full Text] [Related]
39. Impact of agronomic practices on grape aroma composition: a review. Alem H; Rigou P; Schneider R; Ojeda H; Torregrosa L J Sci Food Agric; 2019 Feb; 99(3):975-985. PubMed ID: 30142253 [TBL] [Abstract][Full Text] [Related]
40. The role of fruit exposure in the late season decline of grape berry mesocarp cell vitality. Clarke SJ; Rogiers SY Plant Physiol Biochem; 2019 Feb; 135():69-76. PubMed ID: 30508706 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]