These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 10775666)

  • 41. Comparison of filter bag, cyclonic, and wet dust collection methods in vacuum cleaners.
    Trakumas S; Willeke K; Reponen T; Grinshpun SA; Friedman W
    AIHAJ; 2001; 62(5):573-83. PubMed ID: 11669383
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Field comparison of two inhalable samplers used in Italy to measure the wood dust exposure.
    Campopiano A; Basili F; Angelosanto F; Cannizzaro A; Olori A; Ramires D; Iannò A; Angelici L
    Int J Occup Environ Health; 2016 Apr; 22(2):159-66. PubMed ID: 27373902
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Sampling Efficiency and Performance of Selected Thoracic Aerosol Samplers.
    Görner P; Simon X; Boivin A; Bau S
    Ann Work Expo Health; 2017 Aug; 61(7):784-796. PubMed ID: 28810686
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Evaluation of leakage from a metal machining center using tracer gas methods: a case study.
    Heitbrink WA; Earnest GS; Mickelsen RL; Mead KR; D'Arcy JB
    Am Ind Hyg Assoc J; 1999; 60(6):785-8. PubMed ID: 10635544
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Measuring airflow through the portable high-efficiency air filtration (PHEAF) device to assess reliability of instrument and sample location.
    Newcomer DA; LaPuma P; Brandys R; Northcross A; Dasgupta A
    J Air Waste Manag Assoc; 2019 Jun; 69(6):734-742. PubMed ID: 30698506
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Relationships between Personal Measurements of 'Total' Dust, Respirable, Thoracic, and Inhalable Aerosol Fractions in the Cement Production Industry.
    Notø HP; Nordby KC; Eduard W
    Ann Occup Hyg; 2016 May; 60(4):453-66. PubMed ID: 26755796
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The impact of flood and post-flood cleaning on airborne microbiological and particle contamination in residential houses.
    He C; Salonen H; Ling X; Crilley L; Jayasundara N; Cheung HC; Hargreaves M; Huygens F; Knibbs LD; Ayoko GA; Morawska L
    Environ Int; 2014 Aug; 69():9-17. PubMed ID: 24785990
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Size-resolved fluorescent biological aerosol particle concentrations and occupant emissions in a university classroom.
    Bhangar S; Huffman JA; Nazaroff WW
    Indoor Air; 2014 Dec; 24(6):604-17. PubMed ID: 24654966
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Field evaluation of nanofilm detectors for measuring acidic particles in indoor and outdoor air.
    Cohen BS; Heikkinen MS; Hazi Y; Gao H; Peters P; Lippmann M
    Res Rep Health Eff Inst; 2004 Sep; (121):1-35; discussion 37-46. PubMed ID: 15553489
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Field evaluation of an engineering control for respirable crystalline silica exposures during mortar removal.
    Collingwood S; Heitbrink WA
    J Occup Environ Hyg; 2007 Nov; 4(11):875-87. PubMed ID: 17917951
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Characterization of wood dust emission from hand-held woodworking machines.
    Keller FX; Chata F
    J Occup Environ Hyg; 2018 Jan; 15(1):13-23. PubMed ID: 28841385
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Designing, construction, assessment, and efficiency of local exhaust ventilation in controlling crystalline silica dust and particles, and formaldehyde in a foundry industry plant.
    Morteza MM; Hossein K; Amirhossein M; Naser H; Gholamhossein H; Hossein F
    Arh Hig Rada Toksikol; 2013; 64(1):123-31. PubMed ID: 23585164
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Exposure to nanoscale and microscale particulate air pollution prior to mining development near a northern indigenous community in Québec, Canada.
    Ghoshdastidar AJ; Hu Z; Nazarenko Y; Ariya PA
    Environ Sci Pollut Res Int; 2018 Mar; 25(9):8976-8988. PubMed ID: 29332278
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Impact of air distribution on efficiency of dust capture from metal grinding--bench test method.
    Jankowski T
    Ind Health; 2011; 49(6):735-45. PubMed ID: 22020017
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Measurements of the effectiveness of dust extraction systems of hand sanders used on wood.
    Thorpe A; Brown RC
    Ann Occup Hyg; 1994 Jun; 38(3):279-302. PubMed ID: 8048789
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Development of a continuous aerosol mass concentration measurement device.
    Bémer D; Thomas D; Contal P; Subra I
    Appl Occup Environ Hyg; 2003 Aug; 18(8):577-83. PubMed ID: 12851007
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Size distribution of chromate paint aerosol generated in a bench-scale spray booth.
    Sabty-Daily RA; Hinds WC; Froines JR
    Ann Occup Hyg; 2005 Jan; 49(1):33-45. PubMed ID: 15596421
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Breathing zone particle size and lead concentration from sanding operations to remove lead based paints.
    Alexander WK; Carpenter RL; Kimmel EC
    Drug Chem Toxicol; 1999 Feb; 22(1):41-56. PubMed ID: 10189570
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The performance of personal inhalable dust samplers in wood-products industry facilities.
    Tatum VL; Ray AE; Rovell-Rixx DC
    Appl Occup Environ Hyg; 2001 Jul; 16(7):763-9. PubMed ID: 11458924
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Aerosol generation by blower motors as a bias in assessing aerosol penetration into cabin filtration systems.
    Heitbrink WA; Collingwood S
    J Occup Environ Hyg; 2005 Jan; 2(1):45-53. PubMed ID: 15764523
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.