BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 10775761)

  • 41. Differential coagulotoxicity of metalloprotease isoforms from Bothrops neuwiedi snake venom and consequent variations in antivenom efficacy.
    Sousa LF; Bernardoni JL; Zdenek CN; Dobson J; Coimbra F; Gillett A; Lopes-Ferreira M; Moura-da-Silva AM; Fry BG
    Toxicol Lett; 2020 Oct; 333():211-221. PubMed ID: 32841740
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Molecular characterization and phylogenetic analysis of BjussuMP-I: a RGD-P-III class hemorrhagic metalloprotease from Bothrops jararacussu snake venom.
    Mazzi MV; Magro AJ; Amui SF; Oliveira CZ; Ticli FK; Stábeli RG; Fuly AL; Rosa JC; Braz AS; Fontes MR; Sampaio SV; Soares AM
    J Mol Graph Model; 2007 Jul; 26(1):69-85. PubMed ID: 17081786
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Comparison of venoms from wild and long-term captive Bothrops atrox snakes and characterization of Batroxrhagin, the predominant class PIII metalloproteinase from the venom of this species.
    Freitas-de-Sousa LA; Amazonas DR; Sousa LF; Sant'Anna SS; Nishiyama MY; Serrano SM; Junqueira-de-Azevedo IL; Chalkidis HM; Moura-da-Silva AM; Mourão RH
    Biochimie; 2015 Nov; 118():60-70. PubMed ID: 26276061
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Key events in microvascular damage induced by snake venom hemorrhagic metalloproteinases.
    Escalante T; Rucavado A; Fox JW; Gutiérrez JM
    J Proteomics; 2011 Aug; 74(9):1781-94. PubMed ID: 21447411
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Comparative proteomes, immunoreactivities and neutralization of procoagulant activities of Calloselasma rhodostoma (Malayan pit viper) venoms from four regions in Southeast Asia.
    Tang ELH; Tan NH; Fung SY; Tan CH
    Toxicon; 2019 Nov; 169():91-102. PubMed ID: 31445943
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Hemorrhagic and procoagulant P-III snake venom metalloproteinases differ in their binding to the microvasculature of mouse cremaster muscle.
    Herrera C; Escalante T; Rucavado A; Gutiérrez JM
    Toxicon; 2020 Apr; 178():1-3. PubMed ID: 32094098
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Biochemical and functional characterization of Bothropoidin: the first haemorrhagic metalloproteinase from Bothrops pauloensis snake venom.
    Gomes MS; Naves de Souza DL; Guimarães DO; Lopes DS; Mamede CC; Gimenes SN; Achê DC; Rodrigues RS; Yoneyama KA; Borges MH; de Oliveira F; Rodrigues VM
    J Biochem; 2015 Mar; 157(3):137-49. PubMed ID: 25261583
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Snake venom metalloproteinases: structure/function relationships studies using monoclonal antibodies.
    Tanjoni I; Butera D; Bento L; Della-Casa MS; Marques-Porto R; Takehara HA; Gutiérrez JM; Fernandes I; Moura-da-Silva AM
    Toxicon; 2003 Dec; 42(7):801-8. PubMed ID: 14757212
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A Comprehensive View of the Structural and Functional Alterations of Extracellular Matrix by Snake Venom Metalloproteinases (SVMPs): Novel Perspectives on the Pathophysiology of Envenoming.
    Gutiérrez JM; Escalante T; Rucavado A; Herrera C; Fox JW
    Toxins (Basel); 2016 Oct; 8(10):. PubMed ID: 27782073
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mechanisms of vascular damage by hemorrhagic snake venom metalloproteinases: tissue distribution and in situ hydrolysis.
    Baldo C; Jamora C; Yamanouye N; Zorn TM; Moura-da-Silva AM
    PLoS Negl Trop Dis; 2010 Jun; 4(6):e727. PubMed ID: 20614020
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Interaction of the cysteine-rich domain of snake venom metalloproteinases with the A1 domain of von Willebrand factor promotes site-specific proteolysis of von Willebrand factor and inhibition of von Willebrand factor-mediated platelet aggregation.
    Serrano SMT; Wang D; Shannon JD; Pinto AFM; Polanowska-Grabowska RK; Fox JW
    FEBS J; 2007 Jul; 274(14):3611-3621. PubMed ID: 17578514
    [TBL] [Abstract][Full Text] [Related]  

  • 52. P-I snake venom metalloproteinase is able to activate the complement system by direct cleavage of central components of the cascade.
    Pidde-Queiroz G; Magnoli FC; Portaro FC; Serrano SM; Lopes AS; Paes Leme AF; van den Berg CW; Tambourgi DV
    PLoS Negl Trop Dis; 2013; 7(10):e2519. PubMed ID: 24205428
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Structural considerations of the snake venom metalloproteinases, key members of the M12 reprolysin family of metalloproteinases.
    Fox JW; Serrano SM
    Toxicon; 2005 Jun; 45(8):969-85. PubMed ID: 15922769
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Hemorrhagin VaH4, a covalent heterodimeric P-III metalloproteinase from Vipera ammodytes ammodytes with a potential antitumour activity.
    Leonardi A; Sajevic T; Kovačič L; Pungerčar J; Lang Balija M; Halassy B; Trampuš Bakija A; Križaj I
    Toxicon; 2014 Jan; 77():141-55. PubMed ID: 24269369
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Boomslang (Dispholidus typus) bite. A case report and a review of diagnosis and management.
    du Toit DM
    S Afr Med J; 1980 Mar; 57(13):507-10. PubMed ID: 7368013
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The interaction between the natural metalloendopeptidase inhibitor BJ46a and its target toxin jararhagin analyzed by structural mass spectrometry and molecular modeling.
    Bastos VA; Gomes-Neto F; Rocha SLG; Teixeira-Ferreira A; Perales J; Neves-Ferreira AGC; Valente RH
    J Proteomics; 2020 Jun; 221():103761. PubMed ID: 32247172
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Identification of protective B-cell epitopes of Atroxlysin-I: A metalloproteinase from Bothrops atrox snake venom.
    Schneider FS; de Almeida Lima S; Reis de Ávila G; Castro KL; Guerra-Duarte C; Sanchez EF; Nguyen C; Granier C; Molina F; Chávez-Olortegui C
    Vaccine; 2016 Mar; 34(14):1680-7. PubMed ID: 26917009
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Experimental ophitoxemia produced by the opisthoglyphous lora snake (Philodryas olfersii) venom.
    Rodríguez-Acosta A; Lemoine K; Navarrete L; Girón ME; Aguilar I
    Rev Soc Bras Med Trop; 2006; 39(2):193-7. PubMed ID: 16699649
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Structure of acutolysin-C, a haemorrhagic toxin from the venom of Agkistrodon acutus, providing further evidence for the mechanism of the pH-dependent proteolytic reaction of zinc metalloproteinases.
    Zhu X; Teng M; Niu L
    Acta Crystallogr D Biol Crystallogr; 1999 Nov; 55(Pt 11):1834-41. PubMed ID: 10531480
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Functional variability of snake venom metalloproteinases: adaptive advantages in targeting different prey and implications for human envenomation.
    Bernardoni JL; Sousa LF; Wermelinger LS; Lopes AS; Prezoto BC; Serrano SM; Zingali RB; Moura-da-Silva AM
    PLoS One; 2014; 9(10):e109651. PubMed ID: 25313513
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.