These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 10775766)

  • 1. Antisense knockdown of calcium-dependent K+ channels in developing cerebellar Purkinje neurons.
    Muller YL; Reitstetter R; Yool AJ
    Brain Res Dev Brain Res; 2000 Apr; 120(2):135-40. PubMed ID: 10775766
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of Ca2+-dependent K+ channel expression in rat cerebellum during postnatal development.
    Muller YL; Reitstetter R; Yool AJ
    J Neurosci; 1998 Jan; 18(1):16-25. PubMed ID: 9412482
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calbindin D-28k immunoreactivity in the rat cerebellar cortex: age-related changes.
    Amenta F; Cavalotta D; Del Valle ME; Mancini M; Sabbatini M; Torres JM; Vega JA
    Neurosci Lett; 1994 Aug; 178(1):131-4. PubMed ID: 7816322
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calbindin positive Purkinje cells in the pathology of human cerebellum occurring at the time of its development.
    Laure-Kamionowska M; Maślińska D
    Folia Neuropathol; 2009; 47(4):300-5. PubMed ID: 20054781
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Altered calcium homeostasis in cerebellar Purkinje cells of leaner mutant mice.
    Dove LS; Nahm SS; Murchison D; Abbott LC; Griffith WH
    J Neurophysiol; 2000 Jul; 84(1):513-24. PubMed ID: 10899223
    [TBL] [Abstract][Full Text] [Related]  

  • 6. mGluR1 agonists elicit a Ca 2+ signal and membrane hyperpolarization mediated by apamin-sensitive potassium channels in immature rat purkinje neurons.
    Netzeband JG; Gruol DL
    J Neurosci Res; 2008 Feb; 86(2):293-305. PubMed ID: 17943990
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Developmental changes in Ca2+-regulated functions of early postnatal Purkinje neurons.
    Gruol DL; Quina LA; Netzeband JG; Nguyen D; Gullette CE
    J Neurosci Res; 2006 Jun; 83(8):1381-92. PubMed ID: 16555300
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Somatic and dendritic small-conductance calcium-activated potassium channels regulate the output of cerebellar Purkinje neurons.
    Womack MD; Khodakhah K
    J Neurosci; 2003 Apr; 23(7):2600-7. PubMed ID: 12684445
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distinct contributions of small and large conductance Ca2+-activated K+ channels to rat Purkinje neuron function.
    Edgerton JR; Reinhart PH
    J Physiol; 2003 Apr; 548(Pt 1):53-69. PubMed ID: 12576503
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Granule cells migrate within raphes in the developing cerebellum: an evolutionarily conserved morphogenic event.
    Karam SD; Kim YS; Bothwell M
    J Comp Neurol; 2001 Nov; 440(2):127-35. PubMed ID: 11745612
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Time course and manner of Purkinje neuron death following a single ethanol exposure on postnatal day 4 in the developing rat.
    Light KE; Belcher SM; Pierce DR
    Neuroscience; 2002; 114(2):327-37. PubMed ID: 12204202
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Decreases in the precision of Purkinje cell pacemaking cause cerebellar dysfunction and ataxia.
    Walter JT; Alviña K; Womack MD; Chevez C; Khodakhah K
    Nat Neurosci; 2006 Mar; 9(3):389-97. PubMed ID: 16474392
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of Na+-Ca2+ exchanger activity on the alpha-amino-3-hydroxy-5-methyl-4-isoxazolone-propionate-induced Ca2+ influx in cerebellar Purkinje neurons.
    Kim YT; Park YJ; Jung SY; Seo WS; Suh CK
    Neuroscience; 2005; 131(3):589-99. PubMed ID: 15730865
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distribution of calcium binding protein mRNAs in rat cerebellar cortex.
    Kadowaki K; McGowan E; Mock G; Chandler S; Emson PC
    Neurosci Lett; 1993 Apr; 153(1):80-4. PubMed ID: 8510828
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nitric oxide-evoked cGMP production in Purkinje cells in rat cerebellum: an immunocytochemical and pharmacological study.
    Marcoli M; Maura G; Cervetto C; Giacomini C; Oliveri D; Candiani S; Pestarino M
    Neurochem Int; 2006 Dec; 49(7):683-90. PubMed ID: 16904241
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contribution of L-type channels to Ca2+ regulation of neuronal properties in early developing purkinje neurons.
    Gruol DL; Netzeband JG; Quina LA; Blakely-Gonzalez PK
    Cerebellum; 2005; 4(2):128-39. PubMed ID: 16035195
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increased calcium-dependent K+ channel activity contributes to the maturation of cellular firing patterns in developing cerebellar Purkinje neurons.
    Muller YL; Yool AJ
    Brain Res Dev Brain Res; 1998 Jun; 108(1-2):193-203. PubMed ID: 9693796
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cytoplasmic calcium buffer, calbindin-D28k, is regulated by excitatory amino acids.
    Batini C; Palestini M; Thomasset M; Vigot R
    Neuroreport; 1993 Jul; 4(7):927-30. PubMed ID: 8103684
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acute toxic effect of the algal yessotoxin on Purkinje cells from the cerebellum of Swiss CD1 mice.
    Franchini A; Marchesini E; Poletti R; Ottaviani E
    Toxicon; 2004 Mar; 43(3):347-52. PubMed ID: 15033335
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of pore-forming subunit of P-type calcium channels: an antisense study on rat cerebellar Purkinje cells in culture.
    Gillard SE; Volsen SG; Smith W; Beattie RE; Bleakman D; Lodge D
    Neuropharmacology; 1997 Mar; 36(3):405-9. PubMed ID: 9175621
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.