These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 10775878)
1. Nonconventional amide bond formation catalysis: programming enzyme specificity with substrate mimetics. Bordusa F Braz J Med Biol Res; 2000 May; 33(5):469-85. PubMed ID: 10775878 [TBL] [Abstract][Full Text] [Related]
2. Substrate mimetics in protease catalysis: characteristics, kinetics, and synthetic utility. Bordusa F Curr Protein Pept Sci; 2002 Apr; 3(2):159-80. PubMed ID: 12188901 [TBL] [Abstract][Full Text] [Related]
3. Protease-catalyzed hydrolysis of substrate mimetics (inverse substrates): A new approach reveals a new mechanism. Thormann M; Thust S; Hofmann HJ; Bordusa F Biochemistry; 1999 May; 38(19):6056-62. PubMed ID: 10320331 [TBL] [Abstract][Full Text] [Related]
4. Engineering of substrate mimetics as novel-type substrates for glutamic acid-specific endopeptidases: design, synthesis, and application. Wehofsky N; Wissmann J; Alisch M; Bordusa F Biochim Biophys Acta; 2000 Jun; 1479(1-2):114-22. PubMed ID: 11004534 [TBL] [Abstract][Full Text] [Related]
5. Protease-catalyzed fragment condensation via substrate mimetic strategy: a useful combination of solid-phase peptide synthesis with enzymatic methods. Cerovský V; Bordusa F J Pept Res; 2000 Apr; 55(4):325-9. PubMed ID: 10798378 [TBL] [Abstract][Full Text] [Related]
6. Enzymatic coupling of specific peptides at nonspecific ligation sites: effect of Asp189Glu mutation in trypsin on substrate mimetic-mediated reactions. Xu S; Rall K; Bordusa F J Org Chem; 2001 Mar; 66(5):1627-32. PubMed ID: 11262106 [TBL] [Abstract][Full Text] [Related]
7. Protease catalysis mediated by a substrate mimetic: a novel enzymatic approach to the synthesis of carboxylic acid amides. Günther R; Bordusa F Chemistry; 2000 Feb; 6(3):463-7. PubMed ID: 10747412 [TBL] [Abstract][Full Text] [Related]
8. Programming of enzyme specificity by substrate mimetics: investigations on the Glu-specific V8 protease reveals a novel general principle of biocatalysis. Wehofsky N; Bordusa F FEBS Lett; 1999 Jan; 443(2):220-4. PubMed ID: 9989609 [TBL] [Abstract][Full Text] [Related]
9. Peptide bond formation mediated by substrate mimetics. Structure-guidedoptimization of trypsin for synthesis. Grünberg R; Domgall I; Günther R; Rall K; Hofmann HJ; Bordusa F Eur J Biochem; 2000 Dec; 267(24):7024-30. PubMed ID: 11106412 [TBL] [Abstract][Full Text] [Related]
10. On the rational design of substrate mimetics: The function of docking approaches for the prediction of protease specificities. Günther R; Elsner C; Schmidt S; Hofmann HJ; Bordusa F Org Biomol Chem; 2004 May; 2(10):1442-6. PubMed ID: 15136799 [TBL] [Abstract][Full Text] [Related]
11. Trypsin-specific acyl-4-guanidinophenyl esters for alpha-chymotrypsin-catalysed reactions computational predictions, hydrolyses, and peptide bond formation. Günther R; Thust S; Hofmann HJ; Bordusa F Eur J Biochem; 2000 Jun; 267(12):3496-501. PubMed ID: 10848965 [TBL] [Abstract][Full Text] [Related]
12. Protease-catalyzed peptide synthesis for the site-specific incorporation of alpha-fluoroalkyl amino acids into peptides. Thust S; Koksch B J Org Chem; 2003 Mar; 68(6):2290-6. PubMed ID: 12636393 [TBL] [Abstract][Full Text] [Related]
13. Reverse proteolysis promoted by in situ generated peptide ester fragments. Wehofsky N; Koglin N; Thust S; Bordusa F J Am Chem Soc; 2003 May; 125(20):6126-33. PubMed ID: 12785843 [TBL] [Abstract][Full Text] [Related]
14. Synthesising protease-stable isopeptides by proteases: an efficient biocatalytic approach on the basis of a new type of substrate mimetics. Wehofsky N; Alisch M; Bordusa F Chem Commun (Camb); 2001 Sep; (17):1602-3. PubMed ID: 12240402 [TBL] [Abstract][Full Text] [Related]
15. Transpeptidation reactions of a specific substrate catalyzed by the streptomyces R61 DD-peptidase: characterization of a chromogenic substrate and acyl acceptor design. Kumar I; Pratt RF Biochemistry; 2005 Aug; 44(30):9971-9. PubMed ID: 16042374 [TBL] [Abstract][Full Text] [Related]
16. Substrate mimetics and freezing strategy: a useful combination that broadens the scope of proteases for synthesis. Wehofsky N; Kirbach SW; Haensler M; Wissmann JD; Bordusa F Org Lett; 2000 Jul; 2(14):2027-30. PubMed ID: 10891221 [TBL] [Abstract][Full Text] [Related]
17. Kinetic studies on the mechanism and the specificity of peptide semisynthesis catalyzed by the serine proteases alpha-chymotrypsin and beta-trypsin. Riechmann L; Kasche V Biochem Biophys Res Commun; 1984 Apr; 120(2):686-91. PubMed ID: 6732779 [TBL] [Abstract][Full Text] [Related]
18. Protease-catalyzed peptide synthesis: prevention of side reactions in kinetically controlled reactions. Schellenberger V; Görner A; Könnecke A; Jakubke HD Pept Res; 1991; 4(5):265-9. PubMed ID: 1802237 [TBL] [Abstract][Full Text] [Related]
19. Atlantic cod trypsin-catalyzed peptide synthesis with inverse substrates as acyl donor components. Fuchise T; Kishimura H; Yang ZH; Kojoma M; Toyota E; Sekizaki H Chem Pharm Bull (Tokyo); 2010 Apr; 58(4):484-7. PubMed ID: 20410629 [TBL] [Abstract][Full Text] [Related]
20. Trypsin-catalyzed peptide synthesis with m-guanidinophenyl and m-(guanidinomethyl)phenyl esters as acyl donor component. Sekizaki H; Itoh K; Toyota E; Tanizawa K Amino Acids; 1999; 17(3):285-91. PubMed ID: 10582127 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]