BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 10776914)

  • 1. Traumatic spinal cord injury produced by controlled contusion in mouse.
    Jakeman LB; Guan Z; Wei P; Ponnappan R; Dzwonczyk R; Popovich PG; Stokes BT
    J Neurotrauma; 2000 Apr; 17(4):299-319. PubMed ID: 10776914
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Behavioral and histological outcomes following graded spinal cord contusion injury in the C57Bl/6 mouse.
    Ma M; Basso DM; Walters P; Stokes BT; Jakeman LB
    Exp Neurol; 2001 Jun; 169(2):239-54. PubMed ID: 11358439
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tissue displacement and impact force are important contributors to outcome after spinal cord contusion injury.
    Ghasemlou N; Kerr BJ; David S
    Exp Neurol; 2005 Nov; 196(1):9-17. PubMed ID: 16023101
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Graded contusion model of the mouse spinal cord using a pneumatic impact device.
    Seki T; Hida K; Tada M; Koyanagi I; Iwasaki Y
    Neurosurgery; 2002 May; 50(5):1075-81; discussion 1081-2. PubMed ID: 11950411
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Histopathological and behavioral characterization of a novel cervical spinal cord displacement contusion injury in the rat.
    Pearse DD; Lo TP; Cho KS; Lynch MP; Garg MS; Marcillo AE; Sanchez AR; Cruz Y; Dietrich WD
    J Neurotrauma; 2005 Jun; 22(6):680-702. PubMed ID: 15941377
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A mouse model of graded contusive spinal cord injury.
    Kuhn PL; Wrathall JR
    J Neurotrauma; 1998 Feb; 15(2):125-40. PubMed ID: 9512088
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Behavioral and anatomical consequences of repetitive mild thoracic spinal cord contusion injury in the rat.
    Jin Y; Bouyer J; Haas C; Fischer I
    Exp Neurol; 2014 Jul; 257():57-69. PubMed ID: 24786492
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conversion Equation between the Drop Height in the New York University Impactor and the Impact Force in the Infinite Horizon Impactor in the Contusion Spinal Cord Injury Model.
    Khuyagbaatar B; Kim K; Kim YH
    J Neurotrauma; 2015 Dec; 32(24):1987-93. PubMed ID: 26058442
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Models of spinal cord injury: Part 3. Dynamic load technique.
    Black P; Markowitz RS; Damjanov I; Finkelstein SD; Kushner H; Gillespie J; Feldman M
    Neurosurgery; 1988 Jan; 22(1 Pt 1):51-60. PubMed ID: 3344087
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An electromechanical spinal injury technique with dynamic sensitivity.
    Stokes BT; Noyes DH; Behrmann DL
    J Neurotrauma; 1992; 9(3):187-95. PubMed ID: 1474607
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A simple, inexpensive and easily reproducible model of spinal cord injury in mice: morphological and functional assessment.
    Marques SA; Garcez VF; Del Bel EA; Martinez AM
    J Neurosci Methods; 2009 Feb; 177(1):183-93. PubMed ID: 19013194
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pain behaviors after spinal cord contusion injury in two commonly used mouse strains.
    Kerr BJ; David S
    Exp Neurol; 2007 Aug; 206(2):240-7. PubMed ID: 17586495
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spinal cord injury produced by consistent mechanical displacement of the cord in rats: behavioral and histologic analysis.
    Behrmann DL; Bresnahan JC; Beattie MS; Shah BR
    J Neurotrauma; 1992; 9(3):197-217. PubMed ID: 1474608
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Skeletal muscle adaptations following spinal cord contusion injury in rat and the relationship to locomotor function: a time course study.
    Hutchinson KJ; Linderman JK; Basso DM
    J Neurotrauma; 2001 Oct; 18(10):1075-89. PubMed ID: 11686494
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Basso Mouse Scale for locomotion detects differences in recovery after spinal cord injury in five common mouse strains.
    Basso DM; Fisher LC; Anderson AJ; Jakeman LB; McTigue DM; Popovich PG
    J Neurotrauma; 2006 May; 23(5):635-59. PubMed ID: 16689667
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spinal cord injury in ICAM-1-deficient mice: assessment of functional and histopathological outcome.
    Isaksson J; Farooque M; Olsson Y
    J Neurotrauma; 2000 Apr; 17(4):333-44. PubMed ID: 10776916
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental modeling of spinal cord injury: characterization of a force-defined injury device.
    Scheff SW; Rabchevsky AG; Fugaccia I; Main JA; Lumpp JE
    J Neurotrauma; 2003 Feb; 20(2):179-93. PubMed ID: 12675971
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Tissue Displacement-based Contusive Spinal Cord Injury Model in Mice.
    Wu X; Zhang YP; Qu W; Shields LBE; Shields CB; Xu XM
    J Vis Exp; 2017 Jun; (124):. PubMed ID: 28654063
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Endogenous repair after spinal cord contusion injuries in the rat.
    Beattie MS; Bresnahan JC; Komon J; Tovar CA; Van Meter M; Anderson DK; Faden AI; Hsu CY; Noble LJ; Salzman S; Young W
    Exp Neurol; 1997 Dec; 148(2):453-63. PubMed ID: 9417825
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Laser-Guided Spinal Cord Displacement Injury in Adult Mice.
    Wu X; Qu W; Bakare AA; Zhang YP; Fry CME; Shields LBE; Shields CB; Xu XM
    J Neurotrauma; 2019 Feb; 36(3):460-468. PubMed ID: 29893166
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.