These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 10777789)
1. Intrinsic bias and lineage restriction in the phenotype determination of dopamine and neuropeptide Y amacrine cells. Moody SA; Chow I; Huang S J Neurosci; 2000 May; 20(9):3244-53. PubMed ID: 10777789 [TBL] [Abstract][Full Text] [Related]
2. Asymmetrical blastomere origin and spatial domains of dopamine and neuropeptide Y amacrine subtypes in Xenopus tadpole retina. Huang S; Moody SA J Comp Neurol; 1995 Sep; 360(3):442-53. PubMed ID: 8543650 [TBL] [Abstract][Full Text] [Related]
3. Changes in Rx1 and Pax6 activity at eye field stages differentially alter the production of amacrine neurotransmitter subtypes in Xenopus. Zaghloul NA; Moody SA Mol Vis; 2007 Jan; 13():86-95. PubMed ID: 17277735 [TBL] [Abstract][Full Text] [Related]
4. The retinal fate of Xenopus cleavage stage progenitors is dependent upon blastomere position and competence: studies of normal and regulated clones. Huang S; Moody SA J Neurosci; 1993 Aug; 13(8):3193-210. PubMed ID: 8340804 [TBL] [Abstract][Full Text] [Related]
5. Three types of serotonin-containing amacrine cells in tadpole retina have distinct clonal origins. Huang S; Moody SA J Comp Neurol; 1997 Oct; 387(1):42-52. PubMed ID: 9331170 [TBL] [Abstract][Full Text] [Related]
6. Dual expression of GABA or serotonin and dopamine in Xenopus amacrine cells is transient and may be regulated by laminar cues. Huang S; Moody SA Vis Neurosci; 1998; 15(5):969-77. PubMed ID: 9764538 [TBL] [Abstract][Full Text] [Related]
7. Noggin signaling from Xenopus animal blastomere lineages promotes a neural fate in neighboring vegetal blastomere lineages. Huang S; Yan B; Sullivan SA; Moody SA Dev Dyn; 2007 Jan; 236(1):171-83. PubMed ID: 17096409 [TBL] [Abstract][Full Text] [Related]
8. Subsets of retinal progenitors display temporally regulated and distinct biases in the fates of their progeny. Alexiades MR; Cepko CL Development; 1997 Mar; 124(6):1119-31. PubMed ID: 9102299 [TBL] [Abstract][Full Text] [Related]
9. Animal-vegetal asymmetries influence the earliest steps in retina fate commitment in Xenopus. Moore KB; Moody SA Dev Biol; 1999 Aug; 212(1):25-41. PubMed ID: 10419683 [TBL] [Abstract][Full Text] [Related]
10. Development of neuropeptide Y immunoreactive amacrine and ganglion cells in the pre- and postnatal cat retina. Hutsler JJ; Chalupa LM J Comp Neurol; 1995 Oct; 361(1):152-64. PubMed ID: 8550876 [TBL] [Abstract][Full Text] [Related]
11. Neuropeptide Y- and substance P-like immunoreactive amacrine cells in the retina of the developing Xenopus laevis. Hiscock J; Straznicky C Brain Res Dev Brain Res; 1990 Jun; 54(1):105-13. PubMed ID: 1694741 [TBL] [Abstract][Full Text] [Related]
12. Prdm13 forms a feedback loop with Ptf1a and is required for glycinergic amacrine cell genesis in the Xenopus Retina. Bessodes N; Parain K; Bronchain O; Bellefroid EJ; Perron M Neural Dev; 2017 Sep; 12(1):16. PubMed ID: 28863786 [TBL] [Abstract][Full Text] [Related]
13. Vsx2 in the zebrafish retina: restricted lineages through derepression. Vitorino M; Jusuf PR; Maurus D; Kimura Y; Higashijima S; Harris WA Neural Dev; 2009 Apr; 4():14. PubMed ID: 19344499 [TBL] [Abstract][Full Text] [Related]
14. Extrinsic and intrinsic factors control the genesis of amacrine and cone cells in the rat retina. Belliveau MJ; Cepko CL Development; 1999 Feb; 126(3):555-66. PubMed ID: 9876184 [TBL] [Abstract][Full Text] [Related]
15. Dynamic expression of ganglion cell markers in retinal progenitors during the terminal cell cycle. Prasov L; Glaser T Mol Cell Neurosci; 2012 Jun; 50(2):160-8. PubMed ID: 22579728 [TBL] [Abstract][Full Text] [Related]
16. Testing retina fate commitment in Xenopus by blastomere deletion, transplantation, and explant culture. Moody SA Methods Mol Biol; 2012; 884():115-27. PubMed ID: 22688701 [TBL] [Abstract][Full Text] [Related]
17. Sox2 plays a role in the induction of amacrine and Müller glial cells in mouse retinal progenitor cells. Lin YP; Ouchi Y; Satoh S; Watanabe S Invest Ophthalmol Vis Sci; 2009 Jan; 50(1):68-74. PubMed ID: 18719084 [TBL] [Abstract][Full Text] [Related]
18. Origin and determination of inhibitory cell lineages in the vertebrate retina. Jusuf PR; Almeida AD; Randlett O; Joubin K; Poggi L; Harris WA J Neurosci; 2011 Feb; 31(7):2549-62. PubMed ID: 21325522 [TBL] [Abstract][Full Text] [Related]
19. Neuropeptide Y-like immunoreactive amacrine cells in the retina of Bufo marinus. Hiscock J; Straznicky C Brain Res; 1989 Aug; 494(1):55-64. PubMed ID: 2475218 [TBL] [Abstract][Full Text] [Related]
20. Parallel Inhibition of Dopamine Amacrine Cells and Intrinsically Photosensitive Retinal Ganglion Cells in a Non-Image-Forming Visual Circuit of the Mouse Retina. Vuong HE; Hardi CN; Barnes S; Brecha NC J Neurosci; 2015 Dec; 35(48):15955-70. PubMed ID: 26631476 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]