These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
457 related articles for article (PubMed ID: 10779394)
41. G proteins, beta-adrenoreceptors and beta-adrenergic responsiveness in immature and adult rat ventricular myocardium: influence of neonatal hypo- and hyperthyroidism. Novotny J; Bourová L; Málková O; Svoboda P; Kolár F J Mol Cell Cardiol; 1999 Apr; 31(4):761-72. PubMed ID: 10329204 [TBL] [Abstract][Full Text] [Related]
42. Forskolin derivatives with increased selectivity for cardiac adenylyl cyclase. Toya Y; Schwencke C; Ishikawa Y J Mol Cell Cardiol; 1998 Jan; 30(1):97-108. PubMed ID: 9500868 [TBL] [Abstract][Full Text] [Related]
43. The effect of age on adenosine A1 receptor function in the rat heart. Gao E; Snyder DL; Johnson MD; Friedman E; Roberts J; Horwitz J J Mol Cell Cardiol; 1997 Feb; 29(2):593-602. PubMed ID: 9140818 [TBL] [Abstract][Full Text] [Related]
44. Entamoeba histolytica: identification of functional Gs and Gi proteins as possible signal transduction elements in the interaction of trophozoites with fibronectin. Soid-Raggi LG; Torres-Márquez ME; Meza I Exp Parasitol; 1998 Nov; 90(3):262-9. PubMed ID: 9806871 [TBL] [Abstract][Full Text] [Related]
45. Mutant constructs of the beta-adrenergic receptor that are uncoupled from adenylyl cyclase retain functional activation of Na-H exchange. Barber DL; Ganz MB; Bongiorno PB; Strader CD Mol Pharmacol; 1992 Jun; 41(6):1056-60. PubMed ID: 1319545 [TBL] [Abstract][Full Text] [Related]
46. Receptor number and caveolar co-localization determine receptor coupling efficiency to adenylyl cyclase. Ostrom RS; Gregorian C; Drenan RM; Xiang Y; Regan JW; Insel PA J Biol Chem; 2001 Nov; 276(45):42063-9. PubMed ID: 11533056 [TBL] [Abstract][Full Text] [Related]
47. Transforming growth factor-beta 1 modulates adenylyl cyclase signaling elements and epidermal growth factor signaling in cardiomyocytes. Nair BG; Yu Y; Rashed HM; Sun H; Patel TB J Cell Physiol; 1995 Aug; 164(2):232-9. PubMed ID: 7622573 [TBL] [Abstract][Full Text] [Related]
48. Thrombin and phorbol esters potentiate Gs-mediated cAMP formation in intact human erythroid progenitors via two synergistic signaling pathways converging on adenylyl cyclase type VII. Haslauer M; Baltensperger K; Porzig H Mol Pharmacol; 1998 May; 53(5):837-45. PubMed ID: 9584209 [TBL] [Abstract][Full Text] [Related]
49. [Abnormalities in the beta-adrenergic receptor-adenylate cyclase system in the ventricular myocardium of spontaneously hypertensive rats]. Murakami T Hokkaido Igaku Zasshi; 1988 Jan; 63(1):15-22. PubMed ID: 2834280 [TBL] [Abstract][Full Text] [Related]
50. Expression and function of the beta-adrenergic receptor coupled-adenylyl cyclase system on human airway epithelial cells. Kelsen SG; Higgins NC; Zhou S; Mardini IA; Benovic JL Am J Respir Crit Care Med; 1995 Dec; 152(6 Pt 1):1774-83. PubMed ID: 8520736 [TBL] [Abstract][Full Text] [Related]
51. Beta-adrenergic receptor signalling in stunned myocardium of conscious pigs. Sato S; Sato N; Kudej RK; Uechi M; Asai K; Shen YT; Ishikawa Y; Vatner SF; Vatner DE J Mol Cell Cardiol; 1997 May; 29(5):1387-400. PubMed ID: 9201624 [TBL] [Abstract][Full Text] [Related]
52. Atypical regulation of hepatic adenylyl cyclase and adrenergic receptors during a critical developmental period: agonists evoke supersensitivity accompanied by failure of receptor down-regulation. Thai L; Galluzzo JM; McCook EC; Seidler FJ; Slotkin TA Pediatr Res; 1996 Apr; 39(4 Pt 1):697-707. PubMed ID: 8848348 [TBL] [Abstract][Full Text] [Related]
53. Role of PKCα-p38 MAPK-Giα axis in peroxynitrite-mediated inhibition of β-adrenergic response in pulmonary artery smooth muscle cells. Chakraborti S; Roy S; Chowdhury A; Mandal A; Chakraborti T Cell Signal; 2013 Feb; 25(2):512-26. PubMed ID: 23159577 [TBL] [Abstract][Full Text] [Related]
54. Modulation by cyclic AMP of beta adrenergic receptor-stimulated prostacyclin synthesis in rabbit ventricular myocytes. Ruan Y; Kan H; Malik KU J Pharmacol Exp Ther; 1996 Aug; 278(2):482-9. PubMed ID: 8768695 [TBL] [Abstract][Full Text] [Related]
55. Differential targeting of beta -adrenergic receptor subtypes and adenylyl cyclase to cardiomyocyte caveolae. A mechanism to functionally regulate the cAMP signaling pathway. Rybin VO; Xu X; Lisanti MP; Steinberg SF J Biol Chem; 2000 Dec; 275(52):41447-57. PubMed ID: 11006286 [TBL] [Abstract][Full Text] [Related]
56. Colchicine and cytochalasin B enhance cyclic AMP accumulation via postreceptor actions. Jasper JR; Post SR; Desai KH; Insel PA; Bernstein D J Pharmacol Exp Ther; 1995 Aug; 274(2):937-42. PubMed ID: 7636757 [TBL] [Abstract][Full Text] [Related]
57. Beta-adrenergic receptor overexpression in the fetal rat: distribution, receptor subtypes, and coupling to adenylate cyclase activity via G-proteins. Slotkin TA; Lau C; Seidler FJ Toxicol Appl Pharmacol; 1994 Dec; 129(2):223-34. PubMed ID: 7992312 [TBL] [Abstract][Full Text] [Related]
58. Heterodimers of adenylyl cyclases 2 and 5 show enhanced functional responses in the presence of Galpha s. Baragli A; Grieco ML; Trieu P; Villeneuve LR; Hébert TE Cell Signal; 2008 Mar; 20(3):480-92. PubMed ID: 18164588 [TBL] [Abstract][Full Text] [Related]
59. Through scaffolding and catalytic actions nucleoside diphosphate kinase B differentially regulates basal and β-adrenoceptor-stimulated cAMP synthesis. Hippe HJ; Abu-Taha I; Wolf NM; Katus HA; Wieland T Cell Signal; 2011 Mar; 23(3):579-85. PubMed ID: 21111809 [TBL] [Abstract][Full Text] [Related]