BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

480 related articles for article (PubMed ID: 10779533)

  • 1. Evidence that a family of miniature inverted-repeat transposable elements (MITEs) from the Arabidopsis thaliana genome has arisen from a pogo-like DNA transposon.
    Feschotte C; Mouchès C
    Mol Biol Evol; 2000 May; 17(5):730-7. PubMed ID: 10779533
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The proteins encoded by the pogo-like Lemi1 element bind the TIRs and subterminal repeated motifs of the Arabidopsis Emigrant MITE: consequences for the transposition mechanism of MITEs.
    Loot C; Santiago N; Sanz A; Casacuberta JM
    Nucleic Acids Res; 2006; 34(18):5238-46. PubMed ID: 17003053
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Different strategies to persist: the pogo-like Lemi1 transposon produces miniature inverted-repeat transposable elements or typical defective elements in different plant genomes.
    Guermonprez H; Loot C; Casacuberta JM
    Genetics; 2008 Sep; 180(1):83-92. PubMed ID: 18757929
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular paleontology of transposable elements from Arabidopsis thaliana.
    Kapitonov VV; Jurka J
    Genetica; 1999; 107(1-3):27-37. PubMed ID: 10952195
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pogo transposase contains a putative helix-turn-helix DNA binding domain that recognises a 12 bp sequence within the terminal inverted repeats.
    Wang H; Hartswood E; Finnegan DJ
    Nucleic Acids Res; 1999 Jan; 27(2):455-61. PubMed ID: 9862965
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Presence of miniature inverted-repeat transposable elements (MITEs) in the genome of Arabidopsis thaliana: characterisation of the Emigrant family of elements.
    Casacuberta E; Casacuberta JM; Puigdomènech P; Monfort A
    Plant J; 1998 Oct; 16(1):79-85. PubMed ID: 9807830
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phylogenetic analysis reveals stowaway-like elements may represent a fourth family of the IS630-Tc1-mariner superfamily.
    Turcotte K; Bureau T
    Genome; 2002 Feb; 45(1):82-90. PubMed ID: 11908672
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent amplification of miniature inverted-repeat transposable elements in the vector mosquito Culex pipiens: characterization of the Mimo family.
    Feschotte C; Mouchès C
    Gene; 2000 May; 250(1-2):109-16. PubMed ID: 10854784
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intra- and inter-specific diversity of Tc3-like transposons in nematodes and insects and implications for their evolution and transposition.
    Tu Z; Shao H
    Gene; 2002 Jan; 282(1-2):133-42. PubMed ID: 11814685
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SmTRC1, a novel Schistosoma mansoni DNA transposon, discloses new families of animal and fungi transposons belonging to the CACTA superfamily.
    DeMarco R; Venancio TM; Verjovski-Almeida S
    BMC Evol Biol; 2006 Nov; 6():89. PubMed ID: 17090310
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tc8, a Tourist-like transposon in Caenorhabditis elegans.
    Le QH; Turcotte K; Bureau T
    Genetics; 2001 Jul; 158(3):1081-8. PubMed ID: 11454757
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tiggers and DNA transposon fossils in the human genome.
    Smit AF; Riggs AD
    Proc Natl Acad Sci U S A; 1996 Feb; 93(4):1443-8. PubMed ID: 8643651
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A family of Tc1-like transposons from the genomes of fishes and frogs: evidence for horizontal transmission.
    Leaver MJ
    Gene; 2001 Jun; 271(2):203-14. PubMed ID: 11418241
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expanding the diversity of the IS630-Tc1-mariner superfamily: discovery of a unique DD37E transposon and reclassification of the DD37D and DD39D transposons.
    Shao H; Tu Z
    Genetics; 2001 Nov; 159(3):1103-15. PubMed ID: 11729156
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA-binding specificity of rice mariner-like transposases and interactions with Stowaway MITEs.
    Feschotte C; Osterlund MT; Peeler R; Wessler SR
    Nucleic Acids Res; 2005; 33(7):2153-65. PubMed ID: 15831788
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of repetitive DNA elements in Arabidopsis.
    Surzycki SA; Belknap WR
    J Mol Evol; 1999 Jun; 48(6):684-91. PubMed ID: 10229572
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolution and domestication of
    Gao B; Sang Y; Zong W; Diaby M; Shen D; Wang S; Wang Y; Chen C; Song C
    Genome; 2020 Aug; 63(8):375-386. PubMed ID: 32268072
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of a Tc1-like transposable element in zebrafish (Danio rerio).
    Izsvák Z; Ivics Z; Hackett PB
    Mol Gen Genet; 1995 May; 247(3):312-22. PubMed ID: 7770036
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular and evolutionary analysis of two divergent subfamilies of a novel miniature inverted repeat transposable element in the yellow fever mosquito, Aedes aegypti.
    Tu Z
    Mol Biol Evol; 2000 Sep; 17(9):1313-25. PubMed ID: 10958848
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Horizontal escape of the novel Tc1-like lepidopteran transposon TCp3.2 into Cydia pomonella granulovirus.
    Jehle JA; Nickel A; Vlak JM; Backhaus H
    J Mol Evol; 1998 Feb; 46(2):215-24. PubMed ID: 9452523
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.