BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

480 related articles for article (PubMed ID: 10779533)

  • 21.
    Sang Y; Gao B; Diaby M; Zong W; Chen C; Shen D; Wang S; Wang Y; Ivics Z; Song C
    Mob DNA; 2019; 10():45. PubMed ID: 31788035
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A computer-based systematic survey reveals the predominance of small inverted-repeat elements in wild-type rice genes.
    Bureau TE; Ronald PC; Wessler SR
    Proc Natl Acad Sci U S A; 1996 Aug; 93(16):8524-9. PubMed ID: 8710903
    [TBL] [Abstract][Full Text] [Related]  

  • 23. PIF- and Pong-like transposable elements: distribution, evolution and relationship with Tourist-like miniature inverted-repeat transposable elements.
    Zhang X; Jiang N; Feschotte C; Wessler SR
    Genetics; 2004 Feb; 166(2):971-86. PubMed ID: 15020481
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Birth of three stowaway-like MITE families via microhomology-mediated miniaturization of a Tc1/Mariner element in the yellow fever mosquito.
    Yang G; Fattash I; Lee CN; Liu K; Cavinder B
    Genome Biol Evol; 2013; 5(10):1937-48. PubMed ID: 24068652
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rice transposable elements: a survey of 73,000 sequence-tagged-connectors.
    Mao L; Wood TC; Yu Y; Budiman MA; Tomkins J; Woo S; Sasinowski M; Presting G; Frisch D; Goff S; Dean RA; Wing RA
    Genome Res; 2000 Jul; 10(7):982-90. PubMed ID: 10899147
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tdr2, a new zebrafish transposon of the Tc1 family.
    Göttgens B; Barton LM; Grafham D; Vaudin M; Green AR
    Gene; 1999 Nov; 239(2):373-9. PubMed ID: 10548740
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Transposable elements belonging to the Tc1-Mariner superfamily are heavily mutated in Colletotrichum graminicola.
    Braga RM; Santana MF; Veras da Costa R; Brommonschenkel SH; de Araújo EF; de Queiroz MV
    Mycologia; 2014; 106(4):629-41. PubMed ID: 24895425
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Divergent evolution profiles of DD37D and DD39D families of Tc1/mariner transposons in eukaryotes.
    Wang S; Diaby M; Puzakov M; Ullah N; Wang Y; Danley P; Chen C; Wang X; Gao B; Song C
    Mol Phylogenet Evol; 2021 Aug; 161():107143. PubMed ID: 33713798
    [TBL] [Abstract][Full Text] [Related]  

  • 29. DNA transposons have colonized the genome of the giant virus Pandoravirus salinus.
    Sun C; Feschotte C; Wu Z; Mueller RL
    BMC Biol; 2015 Jun; 13():38. PubMed ID: 26067596
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Pot2, an inverted repeat transposon from the rice blast fungus Magnaporthe grisea.
    Kachroo P; Leong SA; Chattoo BB
    Mol Gen Genet; 1994 Nov; 245(3):339-48. PubMed ID: 7816044
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Computer analyses reveal a hobo-like element in the nematode Caenorhabditis elegans, which presents a conserved transposase domain common with the Tc1-Mariner transposon family.
    Bigot Y; Augé-Gouillou C; Periquet G
    Gene; 1996 Oct; 174(2):265-71. PubMed ID: 8890745
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Phylogenetic evidence for excision of Stowaway miniature inverted-repeat transposable elements in triticeae (Poaceae).
    Petersen G; Seberg O
    Mol Biol Evol; 2000 Nov; 17(11):1589-96. PubMed ID: 11070047
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genome-wide analysis of mariner-like transposable elements in rice reveals complex relationships with stowaway miniature inverted repeat transposable elements (MITEs).
    Feschotte C; Swamy L; Wessler SR
    Genetics; 2003 Feb; 163(2):747-58. PubMed ID: 12618411
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structure and evolution of the hAT transposon superfamily.
    Rubin E; Lithwick G; Levy AA
    Genetics; 2001 Jul; 158(3):949-57. PubMed ID: 11454746
    [TBL] [Abstract][Full Text] [Related]  

  • 35. MDM-1 and MDM-2: two mutator-derived MITE families in rice.
    Yang G; Hall TC
    J Mol Evol; 2003 Mar; 56(3):255-64. PubMed ID: 12612829
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The ancient mariner sails again: transposition of the human Hsmar1 element by a reconstructed transposase and activities of the SETMAR protein on transposon ends.
    Miskey C; Papp B; Mátés L; Sinzelle L; Keller H; Izsvák Z; Ivics Z
    Mol Cell Biol; 2007 Jun; 27(12):4589-600. PubMed ID: 17403897
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Genome-wide analysis of the Emigrant family of MITEs of Arabidopsis thaliana.
    Santiago N; Herráiz C; Goñi JR; Messeguer X; Casacuberta JM
    Mol Biol Evol; 2002 Dec; 19(12):2285-93. PubMed ID: 12446819
    [TBL] [Abstract][Full Text] [Related]  

  • 38. MAK, a computational tool kit for automated MITE analysis.
    Yang G; Hall TC
    Nucleic Acids Res; 2003 Jul; 31(13):3659-65. PubMed ID: 12824388
    [TBL] [Abstract][Full Text] [Related]  

  • 39. First evidence of mariner-like transposons in the genome of the marine microalga Amphora acutiuscula (Bacillariophyta).
    Nguyen DH; Hermann D; Caruso A; Tastard E; Marchand J; Rouault JD; Denis F; Thiriet-Rupert S; Casse N; Morant-Manceau A
    Protist; 2014 Sep; 165(5):730-44. PubMed ID: 25250954
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Affinities of Terminal Inverted Repeats to DNA Binding Domain of Transposase Affect the Transposition Activity of Bamboo
    Ramakrishnan M; Zhou M; Pan C; Hänninen H; Yrjälä K; Vinod KK; Tang D
    Int J Mol Sci; 2019 Jul; 20(15):. PubMed ID: 31357686
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.