These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

57 related articles for article (PubMed ID: 10779619)

  • 21. Catabolic enzyme levels in bacteria grown on binary and ternary substrate mixtures in continuous culture.
    Rudolph JM; Grady CP
    Biotechnol Bioeng; 2002 Jul; 79(2):188-99. PubMed ID: 12115435
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The impact of feed composition on biodegradation of benzoate under cyclic (aerobic/anoxic) conditions.
    Cinar O
    FEMS Microbiol Lett; 2004 Feb; 231(1):59-65. PubMed ID: 14769467
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Anaerobic degradation of aromatic compounds by magnetospirillum strains: isolation and degradation genes.
    Shinoda Y; Akagi J; Uchihashi Y; Hiraishi A; Yukawa H; Yurimoto H; Sakai Y; Kato N
    Biosci Biotechnol Biochem; 2005 Aug; 69(8):1483-91. PubMed ID: 16116275
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Kinetics of microbial dehalogenation of haloaromatic substrates in methanogenic environments.
    Suflita JM; Robinson JA; Tiedje JM
    Appl Environ Microbiol; 1983 May; 45(5):1466-73. PubMed ID: 16346285
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of benzoic acid on metabolic fluxes in yeasts: a continuous-culture study on the regulation of respiration and alcoholic fermentation.
    Verduyn C; Postma E; Scheffers WA; Van Dijken JP
    Yeast; 1992 Jul; 8(7):501-17. PubMed ID: 1523884
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Autecological properties of 3-chlorobenzoate-degrading bacteria and their population dynamics when introduced into sediments.
    Bott TL; Kaplan LA
    Microb Ecol; 2002 Mar; 43(2):199-216. PubMed ID: 12023727
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Competition for inorganic substrates among chemoorganotrophic and chemolithotrophic bacteria.
    Kuenen JG; Boonstra J; Schröder HG; Veldkamp H
    Microb Ecol; 1977 Jun; 3(2):119-30. PubMed ID: 24233465
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Removal of 3-chlorobenzoate using an upflow anaerobic sludge blanket reactor under light conditions.
    Sawayama S; Tsukahara K; Yagishita T
    Water Sci Technol; 2002; 45(10):151-6. PubMed ID: 12188536
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Genetic and genomic insights into the role of benzoate-catabolic pathway redundancy in Burkholderia xenovorans LB400.
    Denef VJ; Klappenbach JA; Patrauchan MA; Florizone C; Rodrigues JL; Tsoi TV; Verstraete W; Eltis LD; Tiedje JM
    Appl Environ Microbiol; 2006 Jan; 72(1):585-95. PubMed ID: 16391095
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of oxygen on the stability and inducibility of the biodegradative capability of benzoate.
    Cinar O; Deniz T; Grady CP
    Water Sci Technol; 2003; 48(8):247-54. PubMed ID: 14682593
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The steady states of microbial growth on mixtures of substitutable substrates in a chemostat.
    Narang A
    J Theor Biol; 1998 Feb; 190(3):241-61. PubMed ID: 9514652
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of substrate concentrations on the growth of heterotrophic bacteria and algae in secondary facultative ponds.
    Kayombo S; Mbwette TS; Katima JH; Jorgensen SE
    Water Res; 2003 Jul; 37(12):2937-43. PubMed ID: 12767296
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An anaerobic continuous-flow fixed-bed reactor sustaining a 3-chlorobenzoate-degrading denitrifying population utilizing versatile electron donors and acceptors.
    Bae HS; Yamagishi T; Suwa Y
    Chemosphere; 2004 Apr; 55(1):93-100. PubMed ID: 14720551
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enrichment and identification of polycyclic aromatic compound-degrading bacteria enriched from sediment samples.
    Long RM; Lappin-Scott HM; Stevens JR
    Biodegradation; 2009 Jul; 20(4):521-31. PubMed ID: 19132328
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The ideal free distribution and bacterial growth on two substrates.
    Krivan V
    Theor Popul Biol; 2006 Mar; 69(2):181-91. PubMed ID: 16271736
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Isolation and characterization of bacterial strains that have high ability to degrade 1,4-dioxane as a sole carbon and energy source.
    Sei K; Miyagaki K; Kakinoki T; Fukugasako K; Inoue D; Ike M
    Biodegradation; 2013 Sep; 24(5):665-74. PubMed ID: 23239086
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The influence of growth rate and nutrient limitation on the microbial composition and biochemical properties of a mixed culture of oral bacteria grown in a chemostat.
    Marsh PD; Hunter JR; Bowden GH; Hamilton IR; McKee AS; Hardie JM; Ellwood DC
    J Gen Microbiol; 1983 Mar; 129(3):755-70. PubMed ID: 6348208
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Growth of Various Species of Bacteria and Other Micro-Organisms in Atmospheres Enriched with Oxygen.
    Moore B; Williams RS
    Biochem J; 1911; 5(4):181-7. PubMed ID: 16742150
    [No Abstract]   [Full Text] [Related]  

  • 39. Environmental and growth conditions affecting the endogenous metabolism of bacteria.
    RIBBONS DW; DAWES EA
    Ann N Y Acad Sci; 1963 Jan; 102():564-86. PubMed ID: 13982003
    [No Abstract]   [Full Text] [Related]  

  • 40. Definitions of bacterial oxygen relationships.
    McBEE RH; LAMANNA C; WEEKS OB
    Bacteriol Rev; 1955 Mar; 19(1):45-7. PubMed ID: 14363076
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.