These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 10779686)

  • 41. Structure and enzymatic properties of genetically truncated forms of the water-insoluble glucan-synthesizing glucosyltransferase from Streptococcus sobrinus.
    Konishi N; Torii Y; Yamamoto T; Miyagi A; Ohta H; Fukui K; Hanamoto S; Matsuno H; Komatsu H; Kodama T; Katayama E
    J Biochem; 1999 Aug; 126(2):287-95. PubMed ID: 10423519
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Immunological relationships between glucosyltransferases synthesizing insoluble glucan from Streptococcus cricetus, Streptococcus sobrinus and Streptococcus downei.
    Tsumori H
    J Gen Microbiol; 1991 Jul; 137(7):1603-9. PubMed ID: 1720167
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Protective effect of topically applied fluoride in relation to fluoride sensitivity of mutans streptococci.
    van Loveren C; Buijs JF; ten Cate JM
    J Dent Res; 1993 Aug; 72(8):1184-90. PubMed ID: 8360360
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Acidogenicity and acidurance of fluoride-resistant Streptococcus sobrinus in vitro.
    Sheng JY; Liu Z
    Chin J Dent Res; 2000 Aug; 3(2):7-14. PubMed ID: 11314523
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Identification of Anion Channels Responsible for Fluoride Resistance in Oral Streptococci.
    Men X; Shibata Y; Takeshita T; Yamashita Y
    PLoS One; 2016; 11(11):e0165900. PubMed ID: 27824896
    [TBL] [Abstract][Full Text] [Related]  

  • 46. One of two gbpC gene homologues is involved in dextran-dependent aggregation of Streptococcus sobrinus.
    Kagami A; Okamoto-Shibayama K; Yamamoto Y; Sato Y; Kizaki H
    Oral Microbiol Immunol; 2007 Aug; 22(4):240-7. PubMed ID: 17600535
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Divalent cations enhance fluoride binding to Streptococcus mutans and Streptococcus sanguinis cells and subsequently inhibit bacterial acid production.
    Domon-Tawaraya H; Nakajo K; Washio J; Ashizawa T; Ichino T; Sugawara H; Fukumoto S; Takahashi N
    Caries Res; 2013; 47(2):141-9. PubMed ID: 23207788
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Conserved repeat motifs and glucan binding by glucansucrases of oral streptococci and Leuconostoc mesenteroides.
    Shah DS; Joucla G; Remaud-Simeon M; Russell RR
    J Bacteriol; 2004 Dec; 186(24):8301-8. PubMed ID: 15576779
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effect of magnesium ions on secretion of glucosyltransferase from Streptococcus sobrinus.
    Yamashita Y; Takehara T
    Microbios; 1989; 60(244-245):177-82. PubMed ID: 2533315
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Identification of amino acid residues in Streptococcus mutans glucosyltransferases influencing the structure of the glucan product.
    Shimamura A; Nakano YJ; Mukasa H; Kuramitsu HK
    J Bacteriol; 1994 Aug; 176(16):4845-50. PubMed ID: 8050997
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Streptococcus mutans glucan-binding protein-A affects Streptococcus gordonii biofilm architecture.
    Banas JA; Fountain TL; Mazurkiewicz JE; Sun K; Vickerman MM
    FEMS Microbiol Lett; 2007 Feb; 267(1):80-8. PubMed ID: 17166223
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mechanism of Streptococcus mutans glucosyltransferases: hybrid-enzyme analysis.
    Nakano YJ; Kuramitsu HK
    J Bacteriol; 1992 Sep; 174(17):5639-46. PubMed ID: 1387395
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The extension of alpha-D-1,3-branch linkages by 1,3-alpha-D-glucan synthase from Streptococcus sobrinus.
    Takehara T; Ansai T; Kunimori A; Yamashita Y; Hanada N
    FEMS Microbiol Lett; 1991 Sep; 67(1):69-71. PubMed ID: 1838088
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Fructosyltransferase activity of a glucan-binding protein from Streptococcus mutans.
    Russell RR; Donald AC; Douglas CW
    J Gen Microbiol; 1983 Oct; 129(10):3243-50. PubMed ID: 6228637
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The inhibitory effects of mushroom extracts on sucrose-dependent oral biofilm formation.
    Yano A; Kikuchi S; Yamashita Y; Sakamoto Y; Nakagawa Y; Yoshida Y
    Appl Microbiol Biotechnol; 2010 Mar; 86(2):615-23. PubMed ID: 19902205
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effects of antibodies against a fusion protein consisting of parts of cell surface protein antigen and glucosyltransferase of Streptococcus sobrinus on cell adhesion of mutans streptococci.
    Kawato T; Yamashita Y; Katono T; Kimura A; Maeno M
    Oral Microbiol Immunol; 2008 Feb; 23(1):14-20. PubMed ID: 18173793
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Growth inhibition of glass ionomer cements on mutans streptococci.
    Loyola-Rodriguez JP; Garcia-Godoy F; Lindquist R
    Pediatr Dent; 1994; 16(5):346-9. PubMed ID: 7831139
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Purification and characterization of cell-associated glucosyltransferase synthesizing insoluble glucan from Streptococcus mutans serotype c.
    Mukasa H; Shimamura A; Tsumori H
    J Gen Microbiol; 1989 Jul; 135(7):2055-63. PubMed ID: 2533246
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Substrate specificity of hydrolase activity of the primer-dependent glucosyltransferases from Streptococcus sobrinus.
    Hanada N; Takehara T
    Microbios; 1991; 66(266):21-5. PubMed ID: 1830918
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The effect of acid and fluoride release on the antimicrobial properties of four glass ionomer cements.
    Fischman SA; Tinanoff N
    Pediatr Dent; 1994; 16(5):368-70. PubMed ID: 7831144
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.