These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 10779878)

  • 1. Localization of phytase in Selenomonas ruminantium and Mitsuokella multiacidus by transmission electron microscopy.
    D'Silva CG; Bae HD; Yanke LJ; Cheng KJ; Selinger LB
    Can J Microbiol; 2000 Apr; 46(4):391-5. PubMed ID: 10779878
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phytase activity of anaerobic ruminal bacteria.
    Yanke LJ; Bae HD; Selinger LB; Cheng KJ
    Microbiology (Reading); 1998 Jun; 144 ( Pt 6)():1565-1573. PubMed ID: 9639927
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient production of mutant phytase (phyA-7) derived from Selenomonas ruminantium using recombinant Escherichia coli in pilot scale.
    Chi-Wei Lan J; Chang CK; Wu HS
    J Biosci Bioeng; 2014 Sep; 118(3):305-10. PubMed ID: 24686155
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Restriction and modification systems of ruminal bacteria.
    Pristas P; Molnárová V; Javorský P
    Folia Microbiol (Praha); 2001; 46(1):71-2. PubMed ID: 11501482
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structures of Selenomonas ruminantium phytase in complex with persulfated phytate: DSP phytase fold and mechanism for sequential substrate hydrolysis.
    Chu HM; Guo RT; Lin TW; Chou CC; Shr HL; Lai HL; Tang TY; Cheng KJ; Selinger BL; Wang AH
    Structure; 2004 Nov; 12(11):2015-24. PubMed ID: 15530366
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A protein tyrosine phosphatase-like inositol polyphosphatase from Selenomonas ruminantium subsp. lactilytica has specificity for the 5-phosphate of myo-inositol hexakisphosphate.
    Puhl AA; Greiner R; Selinger LB
    Int J Biochem Cell Biol; 2008; 40(10):2053-64. PubMed ID: 18358762
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection of N6-methyladenine in GATC sequences of Selenomonas ruminantium.
    Pristas P; Molnarova V; Javorsky P
    J Basic Microbiol; 1998; 38(4):283-7. PubMed ID: 9791949
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cloning of the L-lactate dehydrogenase gene from the ruminal bacterium Selenomonas ruminantium HD4.
    Evans JD; Martin SA
    Curr Microbiol; 2002 Mar; 44(3):155-60. PubMed ID: 11821921
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of a major envelope protein from the rumen anaerobe Selenomonas ruminantium OB268.
    Kalmokoff ML; Austin JW; Whitford MF; Teather RM
    Can J Microbiol; 2000 Apr; 46(4):295-303. PubMed ID: 10779865
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of nitrate addition to a diet on fermentation and microbial populations in the rumen of goats, with special reference to Selenomonas ruminantium having the ability to reduce nitrate and nitrite.
    Asanuma N; Yokoyama S; Hino T
    Anim Sci J; 2015 Apr; 86(4):378-84. PubMed ID: 25439583
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cloning of the O-acetylserine lyase gene from the ruminal bacterium Selenomonas ruminantium HD4.
    Evans JD; Al-Khaldi SF; Martin SA
    Curr Microbiol; 2002 Mar; 44(3):161-6. PubMed ID: 11821922
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular characterization and transcriptional regulation of nitrate reductase in a ruminal bacterium, Selenomonas ruminantium.
    Asanuma N; Iwamoto M; Yoshii T; Hino T
    J Gen Appl Microbiol; 2004 Apr; 50(2):55-63. PubMed ID: 15248143
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cloning of the O-acetylhomoserine sulfhydrylase gene from the ruminal bacterium Selenomonas ruminantium HD4.
    Qin X; Martin SA
    Curr Microbiol; 2004 Apr; 48(4):305-11. PubMed ID: 15057458
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of a broad-specificity xylosidase/arabinosidase important for xylooligosaccharide fermentation by the ruminal anaerobe Selenomonas ruminantium GA192.
    Whitehead TR; Cotta MA
    Curr Microbiol; 2001 Oct; 43(4):293-8. PubMed ID: 11683366
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diversity of phytases in the rumen.
    Nakashima BA; McAllister TA; Sharma R; Selinger LB
    Microb Ecol; 2007 Jan; 53(1):82-8. PubMed ID: 17186149
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular basis for the maintenance of envelope integrity in Selenomonas ruminantium: cadaverine biosynthesis and covalent modification into the peptidoglycan play a major role.
    Kojima S; Kamio Y
    J Nutr Sci Vitaminol (Tokyo); 2012; 58(3):153-60. PubMed ID: 22878384
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel biosensors for quantitative phytic acid and phytase measurement.
    Mak WC; Ng YM; Chan C; Kwong WK; Renneberg R
    Biosens Bioelectron; 2004 Apr; 19(9):1029-35. PubMed ID: 15018958
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Culture conditions influencing phytase production of Mitsuokella jalaludinii, a new bacterial species from the rumen of cattle.
    Lan GQ; Abdullah N; Jalaludin S; Ho YW
    J Appl Microbiol; 2002; 93(4):668-74. PubMed ID: 12234350
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic diversity and expression profiles of cysteine phytases in the sheep rumen during a feeding cycle.
    Li Z; Huang H; Zhao H; Meng K; Zhao J; Shi P; Yang P; Luo H; Wang Y; Yao B
    Lett Appl Microbiol; 2014 Dec; 59(6):615-20. PubMed ID: 25146240
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lactate dehydrogenase gene variability among predominant lactate utilizing ruminal bacteria.
    Fecskeová L; Piknová M; Javorský P; Pristas P
    Folia Microbiol (Praha); 2010 Jul; 55(4):315-8. PubMed ID: 20680561
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.