These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 10780481)

  • 1. DNA structures recognized by the human UV-DDB protein.
    Mizukoshi T; Fujiwara Y; Iwai S
    Nucleic Acids Symp Ser; 1999; (42):265-6. PubMed ID: 10780481
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of DNA recognition by the human UV-damaged DNA-binding protein.
    Fujiwara Y; Masutani C; Mizukoshi T; Kondo J; Hanaoka F; Iwai S
    J Biol Chem; 1999 Jul; 274(28):20027-33. PubMed ID: 10391953
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of the binding of distamycin A to damaged DNA: a comparison with the DNA recognition of the human DDB protein.
    Fujiwara Y; Inase A; Kawasaki Y; Yoshikawa S; Iwai S
    Nucleic Acids Symp Ser (Oxf); 2006; (50):235-6. PubMed ID: 17150904
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural study of DNA duplexes containing the (6-4) photoproduct by fluorescence resonance energy transfer.
    Mizukoshi T; Kodama TS; Fujiwara Y; Furuno T; Nakanishi M; Iwai S
    Nucleic Acids Res; 2001 Dec; 29(24):4948-54. PubMed ID: 11812824
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of structural flexibility of damaged DNA using thiol-tethered oligonucleotide duplexes.
    Fujita M; Watanabe S; Yoshizawa M; Yamamoto J; Iwai S
    PLoS One; 2015; 10(2):e0117798. PubMed ID: 25679955
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural basis of pyrimidine-pyrimidone (6-4) photoproduct recognition by UV-DDB in the nucleosome.
    Osakabe A; Tachiwana H; Kagawa W; Horikoshi N; Matsumoto S; Hasegawa M; Matsumoto N; Toga T; Yamamoto J; Hanaoka F; Thomä NH; Sugasawa K; Iwai S; Kurumizaka H
    Sci Rep; 2015 Nov; 5():16330. PubMed ID: 26573481
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mean DNA bend angle and distribution of DNA bend angles in the CAP-DNA complex in solution.
    Kapanidis AN; Ebright YW; Ludescher RD; Chan S; Ebright RH
    J Mol Biol; 2001 Sep; 312(3):453-68. PubMed ID: 11563909
    [TBL] [Abstract][Full Text] [Related]  

  • 8. HU binding to bent DNA: a fluorescence resonance energy transfer and anisotropy study.
    Wojtuszewski K; Mukerji I
    Biochemistry; 2003 Mar; 42(10):3096-104. PubMed ID: 12627977
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNA bending is essential for the site-specific recognition of DNA response elements by the DNA binding domain of the tumor suppressor protein p53.
    Nagaich AK; Appella E; Harrington RE
    J Biol Chem; 1997 Jun; 272(23):14842-9. PubMed ID: 9169453
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Binding of EcoP15I DNA methyltransferase to DNA reveals a large structural distortion within the recognition sequence.
    Reddy YV; Rao DN
    J Mol Biol; 2000 May; 298(4):597-610. PubMed ID: 10788323
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Location of cyanine-3 on double-stranded DNA: importance for fluorescence resonance energy transfer studies.
    Norman DG; Grainger RJ; Uhrín D; Lilley DM
    Biochemistry; 2000 May; 39(21):6317-24. PubMed ID: 10828944
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preferential binding of the fd gene 5 protein to a structured form of the single-stranded DNA sequence d(GT5G4CT4C).
    Oliver AW; Kneale GG
    Biochem Soc Trans; 1997 Nov; 25(4):S643. PubMed ID: 9450071
    [No Abstract]   [Full Text] [Related]  

  • 13. Fluorescence energy transfer analysis of DNA structures containing several bulges and their interaction with CAP.
    Stühmeier F; Hillisch A; Clegg RM; Diekman S
    J Mol Biol; 2000 Oct; 302(5):1081-100. PubMed ID: 11183776
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CCAAT-box binding protein NF-Y (CBF, CP1) recognizes the minor groove and distorts DNA.
    Ronchi A; Bellorini M; Mongelli N; Mantovani R
    Nucleic Acids Res; 1995 Nov; 23(22):4565-72. PubMed ID: 8524643
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of DNA bending in a DNA-PAP1 protein complex by fluorescence resonance energy transfer.
    Ozaki H; Iwase N; Sawai H; Kodama T; Kyogoku Y
    Biochem Biophys Res Commun; 1997 Feb; 231(3):553-6. PubMed ID: 9070843
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A 127 kDa component of a UV-damaged DNA-binding complex, which is defective in some xeroderma pigmentosum group E patients, is homologous to a slime mold protein.
    Takao M; Abramic M; Moos M; Otrin VR; Wootton JC; McLenigan M; Levine AS; Protic M
    Nucleic Acids Res; 1993 Aug; 21(17):4111-8. PubMed ID: 8371985
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Angle and locus of the bend induced by the msp I DNA methyltransferase in a sequence-specific complex with DNA.
    Dubey AK; Bhattacharya SK
    Nucleic Acids Res; 1997 May; 25(10):2025-9. PubMed ID: 9115372
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural basis for SRY-dependent 46-X,Y sex reversal: modulation of DNA bending by a naturally occurring point mutation.
    Murphy EC; Zhurkin VB; Louis JM; Cornilescu G; Clore GM
    J Mol Biol; 2001 Sep; 312(3):481-99. PubMed ID: 11563911
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energetics of lesion recognition by a DNA repair protein: thermodynamic characterization of formamidopyrimidine-glycosylase (Fpg) interactions with damaged DNA duplexes.
    Minetti CA; Remeta DP; Zharkov DO; Plum GE; Johnson F; Grollman AP; Breslauer KJ
    J Mol Biol; 2003 May; 328(5):1047-60. PubMed ID: 12729740
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA bending induced by high mobility group proteins studied by fluorescence resonance energy transfer.
    Lorenz M; Hillisch A; Payet D; Buttinelli M; Travers A; Diekmann S
    Biochemistry; 1999 Sep; 38(37):12150-8. PubMed ID: 10508419
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.