These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

691 related articles for article (PubMed ID: 10781070)

  • 1. Robust perfect adaptation in bacterial chemotaxis through integral feedback control.
    Yi TM; Huang Y; Simon MI; Doyle J
    Proc Natl Acad Sci U S A; 2000 Apr; 97(9):4649-53. PubMed ID: 10781070
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Perfect and near-perfect adaptation in a model of bacterial chemotaxis.
    Mello BA; Tu Y
    Biophys J; 2003 May; 84(5):2943-56. PubMed ID: 12719226
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrasensitivity and fluctuations in the Barkai-Leibler model of chemotaxis receptors in Escherichia coli.
    Roy U; Gopalakrishnan M
    PLoS One; 2017; 12(4):e0175309. PubMed ID: 28406996
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting perfect adaptation motifs in reaction kinetic networks.
    Drengstig T; Ueda HR; Ruoff P
    J Phys Chem B; 2008 Dec; 112(51):16752-8. PubMed ID: 19367864
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A universal biomolecular integral feedback controller for robust perfect adaptation.
    Aoki SK; Lillacci G; Gupta A; Baumschlager A; Schweingruber D; Khammash M
    Nature; 2019 Jun; 570(7762):533-537. PubMed ID: 31217585
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Perfect and Near-Perfect Adaptation in Cell Signaling.
    Ferrell JE
    Cell Syst; 2016 Feb; 2(2):62-7. PubMed ID: 27135159
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Robustness in simple biochemical networks.
    Barkai N; Leibler S
    Nature; 1997 Jun; 387(6636):913-7. PubMed ID: 9202124
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Feedback control architecture and the bacterial chemotaxis network.
    Hamadeh A; Roberts MA; August E; McSharry PE; Maini PK; Armitage JP; Papachristodoulou A
    PLoS Comput Biol; 2011 May; 7(5):e1001130. PubMed ID: 21573199
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control analysis of bacterial chemotaxis signaling.
    Yi TM; Andrews BW; Iglesias PA
    Methods Enzymol; 2007; 422():123-40. PubMed ID: 17628137
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The control of the controller: molecular mechanisms for robust perfect adaptation and temperature compensation.
    Ni XY; Drengstig T; Ruoff P
    Biophys J; 2009 Sep; 97(5):1244-53. PubMed ID: 19720012
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Real-time nonlinear feedback control of pattern formation in (bio)chemical reaction-diffusion processes: a model study.
    Brandt-Pollmann U; Lebiedz D; Diehl M; Sager S; Schlöder J
    Chaos; 2005 Sep; 15(3):33901. PubMed ID: 16252992
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonequilibrium nature of adaptation in bacterial chemotaxis: A fluctuation-dissipation theorem approach.
    Jia C
    Phys Rev E; 2017 Apr; 95(4-1):042116. PubMed ID: 28505786
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antithetic Integral Feedback Ensures Robust Perfect Adaptation in Noisy Biomolecular Networks.
    Briat C; Gupta A; Khammash M
    Cell Syst; 2016 Jan; 2(1):15-26. PubMed ID: 27136686
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Guidelines for designing the antithetic feedback motif.
    Baetica AA; Leong YP; Murray RM
    Phys Biol; 2020 Aug; 17(5):055002. PubMed ID: 32217822
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Overview of mathematical approaches used to model bacterial chemotaxis I: the single cell.
    Tindall MJ; Porter SL; Maini PK; Gaglia G; Armitage JP
    Bull Math Biol; 2008 Aug; 70(6):1525-69. PubMed ID: 18642048
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamical compensation in physiological circuits.
    Karin O; Swisa A; Glaser B; Dor Y; Alon U
    Mol Syst Biol; 2016 Nov; 12(11):886. PubMed ID: 27875241
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exponential signaling gain at the receptor level enhances signal-to-noise ratio in bacterial chemotaxis.
    Neumann S; Løvdok L; Bentele K; Meisig J; Ullner E; Paldy FS; Sourjik V; Kollmann M
    PLoS One; 2014; 9(4):e87815. PubMed ID: 24736435
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemotaxis in Escherichia coli: a molecular model for robust precise adaptation.
    Hansen CH; Endres RG; Wingreen NS
    PLoS Comput Biol; 2008 Jan; 4(1):e1. PubMed ID: 18179279
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptive molecular networks controlling chemotactic migration: dynamic inputs and selection of the network architecture.
    Chang H; Levchenko A
    Philos Trans R Soc Lond B Biol Sci; 2013; 368(1629):20130117. PubMed ID: 24062588
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Robust effects of Tsr-CheBp and CheA-CheYp affinity in bacterial chemotaxis.
    Matsuzaki Y; Kikuchi S; Tomita M
    Artif Intell Med; 2007 Oct; 41(2):145-50. PubMed ID: 17913479
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 35.