These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 10781207)

  • 1. Tracking differential interference contrast diffraction line images with nanometre sensitivity.
    Danuser G; Tran PT; Salmon ED
    J Microsc; 2000 Apr; 198(Pt 1):34-53. PubMed ID: 10781207
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection of nuclei in 4D Nomarski DIC microscope images of early Caenorhabditis elegans embryos using local image entropy and object tracking.
    Hamahashi S; Onami S; Kitano H
    BMC Bioinformatics; 2005 May; 6():125. PubMed ID: 15910690
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visualization of the living cytoskeleton by video-enhanced microscopy and digital image processing.
    Weiss DG
    J Cell Sci Suppl; 1986; 5():1-15. PubMed ID: 3308912
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Super-resolution differential interference contrast microscopy by structured illumination.
    Chen J; Xu Y; Lv X; Lai X; Zeng S
    Opt Express; 2013 Jan; 21(1):112-21. PubMed ID: 23388901
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Live-cell tracking using SIFT features in DIC microscopic videos.
    Jiang RM; Crookes D; Luo N; Davidson MW
    IEEE Trans Biomed Eng; 2010 Sep; 57(9):2219-28. PubMed ID: 20483698
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Video-enhanced contrast, differential interference contrast (AVEC-DIC) microscopy: a new method capable of analyzing microtubule-related motility in the reticulopodial network of Allogromia laticollaris.
    Allen RD; Allen NS; Travis JL
    Cell Motil; 1981; 1(3):291-302. PubMed ID: 7348605
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Particle filtering for multiple object tracking in dynamic fluorescence microscopy images: application to microtubule growth analysis.
    Smal I; Draegestein K; Galjart N; Niessen W; Meijering E
    IEEE Trans Med Imaging; 2008 Jun; 27(6):789-804. PubMed ID: 18541486
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential interference contrast polarization anisotropy for tracking rotational dynamics of gold nanorods.
    Ha JW; Sun W; Wang G; Fang N
    Chem Commun (Camb); 2011 Jul; 47(27):7743-5. PubMed ID: 21647523
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of dynamic instability of steady-state microtubules in vitro by video-enhanced differential interference contrast microscopy with an appendix by Emin Oroudjev.
    Yenjerla M; Lopus M; Wilson L
    Methods Cell Biol; 2010; 95():189-206. PubMed ID: 20466136
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reconstruction of optical pathlength distributions from images obtained by a wide-field differential interference contrast microscope.
    van Munster EB; van Vliet LJ; Aten JA
    J Microsc; 1997 Nov; 188(Pt 2):149-57. PubMed ID: 9418272
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automated analysis of differential interference contrast microscopy images of the foveal cone mosaic.
    Wojtas DH; Wu B; Ahnelt PK; Bones PJ; Millane RP
    J Opt Soc Am A Opt Image Sci Vis; 2008 May; 25(5):1181-9. PubMed ID: 18451927
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Doubling the resolution of spatial-light-modulator-based differential interference contrast microscopy by structured illumination.
    Chen J; Lv X; Zeng S
    Opt Lett; 2013 Sep; 38(17):3219-22. PubMed ID: 23988918
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantifying Intracellular Particle Flows by DIC Object Tracking.
    Chaphalkar AR; Jawale YK; Khatri D; Athale CA
    Biophys J; 2021 Feb; 120(3):393-401. PubMed ID: 33359170
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Digital differential interference contrast autofocus for high-resolution oil-immersion microscopy.
    Shen F; Hodgson L; Price JH; Hahn KM
    Cytometry A; 2008 Jul; 73(7):658-66. PubMed ID: 18395817
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Label-free high-speed wide-field imaging of single microtubules using interference reflection microscopy.
    Mahamdeh M; Simmert S; Luchniak A; Schäffer E; Howard J
    J Microsc; 2018 Oct; 272(1):60-66. PubMed ID: 30044498
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Label-Free Imaging of Single Microtubule Dynamics Using Spatial Light Interference Microscopy.
    Kandel ME; Teng KW; Selvin PR; Popescu G
    ACS Nano; 2017 Jan; 11(1):647-655. PubMed ID: 27997798
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Important factors determining the nanoscale tracking precision of dynamic microtubule ends.
    Bohner G; Gustafsson N; Cade NI; Maurer SP; Griffin LD; Surrey T
    J Microsc; 2016 Jan; 261(1):67-78. PubMed ID: 26444439
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Imaging non-fluorescent nanoparticles in living cells with wavelength-dependent differential interference contrast microscopy and planar illumination microscopy.
    Sun W; Xiao L; Fang N
    Methods Mol Biol; 2013; 931():169-86. PubMed ID: 23027004
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3-D reconstruction of microtubules from multi-angle total internal reflection fluorescence microscopy using Bayesian framework.
    Yang Q; Karpikov A; Toomre D; Duncan JS
    IEEE Trans Image Process; 2011 Aug; 20(8):2248-59. PubMed ID: 21324778
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Video-enhanced microscopy with a computer frame memory.
    Allen RD; Allen NS
    J Microsc; 1983 Jan; 129(Pt 1):3-17. PubMed ID: 6827591
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.