BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 10781290)

  • 1. The action of sevoflurane on vascular smooth muscle of isolated mesenteric resistance arteries (part 1): role of endothelium.
    Izumi K; Akata T; Takahashi S
    Anesthesiology; 2000 May; 92(5):1426-40. PubMed ID: 10781290
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of endothelium in the action of isoflurane on vascular smooth muscle of isolated mesenteric resistance arteries.
    Izumi K; Akata T; Takahashi S
    Anesthesiology; 2001 Oct; 95(4):990-8. PubMed ID: 11605943
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The action of sevoflurane on vascular smooth muscle of isolated mesenteric resistance arteries (part 2): mechanisms of endothelium-independent vasorelaxation.
    Akata T; Izumi K; Nakashima M
    Anesthesiology; 2000 May; 92(5):1441-53. PubMed ID: 10781291
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The mechanisms of the direct action of etomidate on vascular reactivity in rat mesenteric resistance arteries.
    Shirozu K; Akata T; Yoshino J; Setoguchi H; Morikawa K; Hoka S
    Anesth Analg; 2009 Feb; 108(2):496-507. PubMed ID: 19151278
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiple actions of halothane on contractile response to noradrenaline in isolated mesenteric resistance arteries.
    Yoshino J; Akata T; Izumi K; Takahashi S
    Naunyn Schmiedebergs Arch Pharmacol; 2005 Jun; 371(6):500-15. PubMed ID: 16012873
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of volatile anesthetics on acetylcholine-induced relaxation in the rabbit mesenteric resistance artery.
    Akata T; Nakashima M; Kodama K; Boyle WA; Takahashi S
    Anesthesiology; 1995 Jan; 82(1):188-204. PubMed ID: 7832300
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diabetes-associated alterations in volatile anesthetic actions on contractile response to norepinephrine in isolated mesenteric resistance arteries.
    Yoshino J; Akata T; Shirozu K; Izumi K; Hoka S
    Anesthesiology; 2010 Mar; 112(3):595-606. PubMed ID: 20124980
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms of direct inhibitory action of ketamine on vascular smooth muscle in mesenteric resistance arteries.
    Akata T; Izumi K; Nakashima M
    Anesthesiology; 2001 Aug; 95(2):452-62. PubMed ID: 11506120
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms of direct inhibitory action of isoflurane on vascular smooth muscle of mesenteric resistance arteries.
    Akata T; Kanna T; Yoshino J; Takahashi S
    Anesthesiology; 2003 Sep; 99(3):666-77. PubMed ID: 12960552
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Endothelium-independent vasoconstricting and vasodilating actions of halothane on rat mesenteric resistance blood vessels.
    Boyle WA; Maher GM
    Anesthesiology; 1995 Jan; 82(1):221-35. PubMed ID: 7832305
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sevoflurane promotes endothelium-dependent smooth muscle relaxation in isolated human omental arteries and veins.
    Thorlacius K; Bodelsson M
    Anesth Analg; 2004 Aug; 99(2):423-8, table of contents. PubMed ID: 15271717
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The inhibition of serotonin evoked bovine coronary artery contraction by halothane, isoflurane and sevoflurane is endothelium-independent.
    Xiaoping Z; List WF
    Eur J Anaesthesiol; 1996 Jul; 13(4):352-8. PubMed ID: 8842655
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The vascular relaxing effects of sevoflurane and isoflurane are more important in hypertensive than in normotensive rats.
    Yu J; Ogawa K; Tokinaga Y; Iwahashi S; Hatano Y
    Can J Anaesth; 2004 Dec; 51(10):979-85. PubMed ID: 15574546
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interdependence of contractile responses of rat small mesenteric arteries on nitric oxide and cyclo-oxygenase and lipoxygenase products of arachidonic acid.
    Wu XC; Johns E; Michael J; Richards NT
    Br J Pharmacol; 1994 Jun; 112(2):360-8. PubMed ID: 7521254
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Endothelin-1 released by vascular smooth muscle cells enhances vascular responsiveness of rat mesenteric arterial bed exposed to high perfusion flow.
    Russo D; Minutolo R; Clienti C; De Nicola L; Iodice C; Savino FA; Andreucci VE
    Am J Hypertens; 1999 Nov; 12(11 Pt 1):1119-23. PubMed ID: 10604489
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of sevoflurane on the vascular reactivity of rabbit mesenteric artery.
    Yamaguchi A; Okabe E
    Br J Anaesth; 1995 May; 74(5):576-82. PubMed ID: 7772435
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heterogeneity of endothelium-dependent vasodilation in pressurized cerebral and small mesenteric resistance arteries of the rat.
    Lagaud GJ; Skarsgard PL; Laher I; van Breemen C
    J Pharmacol Exp Ther; 1999 Aug; 290(2):832-9. PubMed ID: 10411599
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of volatile anesthetic actions on intracellular calcium stores of vascular smooth muscle: investigation in isolated systemic resistance arteries.
    Akata T; Nakashima M; Izumi K
    Anesthesiology; 2001 May; 94(5):840-50. PubMed ID: 11388536
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Volatile anaesthetic actions on norepinephrine-induced contraction of small splanchnic resistance arteries.
    Akata T; Kodama K; Takahashi S
    Can J Anaesth; 1995 Nov; 42(11):1040-50. PubMed ID: 8590495
    [TBL] [Abstract][Full Text] [Related]  

  • 20. K(+) channel blockers and cytochrome P450 inhibitors on acetylcholine-induced, endothelium-dependent relaxation in rabbit mesenteric artery.
    Fujimoto S; Ikegami Y; Isaka M; Kato T; Nishimura K; Itoh T
    Eur J Pharmacol; 1999 Nov; 384(1):7-15. PubMed ID: 10611413
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.