BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 10781534)

  • 1. Deletion analysis of the Escherichia coli taurine and alkanesulfonate transport systems.
    Eichhorn E; van der Ploeg JR; Leisinger T
    J Bacteriol; 2000 May; 182(10):2687-95. PubMed ID: 10781534
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Taurine dioxygenase (tauD)-independent taurine assimilation in Escherichia coli.
    Nishikawa M; Shen L; Ogawa K
    Microbiology (Reading); 2018 Nov; 164(11):1446-1456. PubMed ID: 30277858
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sulfonate-sulfur metabolism and its regulation in Escherichia coli.
    van der Ploeg JR; Eichhorn E; Leisinger T
    Arch Microbiol; 2001 Jul; 176(1-2):1-8. PubMed ID: 11479697
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Escherichia coli utilizes methanesulfonate and L-cysteate as sole sulfur sources for growth.
    Eichhorn E; Leisinger T
    FEMS Microbiol Lett; 2001 Dec; 205(2):271-5. PubMed ID: 11750815
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Desolvation of the substrate-binding protein TauA dictates ligand specificity for the alkanesulfonate ABC importer TauABC.
    Qu F; ElOmari K; Wagner A; De Simone A; Beis K
    Biochem J; 2019 Dec; 476(23):3649-3660. PubMed ID: 31802112
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of a two-component alkanesulfonate monooxygenase from Escherichia coli.
    Eichhorn E; van der Ploeg JR; Leisinger T
    J Biol Chem; 1999 Sep; 274(38):26639-46. PubMed ID: 10480865
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of sulfate starvation-regulated genes in Escherichia coli: a gene cluster involved in the utilization of taurine as a sulfur source.
    van der Ploeg JR; Weiss MA; Saller E; Nashimoto H; Saito N; Kertesz MA; Leisinger T
    J Bacteriol; 1996 Sep; 178(18):5438-46. PubMed ID: 8808933
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deletional studies to investigate the functional role of a dynamic loop region of alkanesulfonate monooxygenase.
    Xiong J; Ellis HR
    Biochim Biophys Acta; 2012 Jul; 1824(7):898-906. PubMed ID: 22564769
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Escherichia coli ssuEADCB gene cluster is required for the utilization of sulfur from aliphatic sulfonates and is regulated by the transcriptional activator Cbl.
    van Der Ploeg JR; Iwanicka-Nowicka R; Bykowski T; Hryniewicz MM; Leisinger T
    J Biol Chem; 1999 Oct; 274(41):29358-65. PubMed ID: 10506196
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Involvement of CysB and Cbl regulatory proteins in expression of the tauABCD operon and other sulfate starvation-inducible genes in Escherichia coli.
    van der Ploeg JR; Iwanicka-Nowicka R; Kertesz MA; Leisinger T; Hryniewicz MM
    J Bacteriol; 1997 Dec; 179(24):7671-8. PubMed ID: 9401024
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalytic importance of the substrate binding order for the FMNH2-dependent alkanesulfonate monooxygenase enzyme.
    Zhan X; Carpenter RA; Ellis HR
    Biochemistry; 2008 Feb; 47(7):2221-30. PubMed ID: 18198899
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism for sulfur acquisition by the alkanesulfonate monooxygenase system.
    Ellis HR
    Bioorg Chem; 2011 Dec; 39(5-6):178-84. PubMed ID: 21880344
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shorter Alkanesulfonate Carbon Chains Destabilize the Active Site Architecture of SsuD for Desulfonation.
    Somai S; Yue K; Acevedo O; Ellis HR
    Biochemistry; 2023 Jan; 62(1):85-94. PubMed ID: 36534405
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Steady-state and transient kinetic analyses of taurine/alpha-ketoglutarate dioxygenase: effects of oxygen concentration, alternative sulfonates, and active-site variants on the FeIV-oxo intermediate.
    Grzyska PK; Ryle MJ; Monterosso GR; Liu J; Ballou DP; Hausinger RP
    Biochemistry; 2005 Mar; 44(10):3845-55. PubMed ID: 15751960
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of protein-protein interactions in the alkanesulfonate monooxygenase system from Escherichia coli.
    Abdurachim K; Ellis HR
    J Bacteriol; 2006 Dec; 188(23):8153-9. PubMed ID: 16997955
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The ssu locus plays a key role in organosulfur metabolism in Pseudomonas putida S-313.
    Kahnert A; Vermeij P; Wietek C; James P; Leisinger T; Kertesz MA
    J Bacteriol; 2000 May; 182(10):2869-78. PubMed ID: 10781557
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The sulfur/sulfonates transport systems in Xanthomonas citri pv. citri.
    Pereira CT; Moutran A; Fessel M; Balan A
    BMC Genomics; 2015 Jul; 16(1):524. PubMed ID: 26169280
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structure of Escherichia coli alkanesulfonate monooxygenase SsuD.
    Eichhorn E; Davey CA; Sargent DF; Leisinger T; Richmond TJ
    J Mol Biol; 2002 Nov; 324(3):457-68. PubMed ID: 12445781
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bacillus subtilis genes for the utilization of sulfur from aliphatic sulfonates.
    van der Ploeg JR; Cummings NJ; Leisinger T; Connerton IF
    Microbiology (Reading); 1998 Sep; 144 ( Pt 9)():2555-2561. PubMed ID: 9782504
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protective Role of Bacterial Alkanesulfonate Monooxygenase under Oxidative Stress.
    Park C; Shin B; Park W
    Appl Environ Microbiol; 2020 Jul; 86(15):. PubMed ID: 32503904
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.