BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 10781553)

  • 1. Catabolism of alpha-ketoglutarate by a sucA mutant of Bradyrhizobium japonicum: evidence for an alternative tricarboxylic acid cycle.
    Green LS; Li Y; Emerich DW; Bergersen FJ; Day DA
    J Bacteriol; 2000 May; 182(10):2838-44. PubMed ID: 10781553
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bradyrhizobium japonicum does not require alpha-ketoglutarate dehydrogenase for growth on succinate or malate.
    Green LS; Emerich DW
    J Bacteriol; 1997 Jan; 179(1):194-201. PubMed ID: 8981998
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative analysis of the Bradyrhizobium japonicum sucA region.
    Green LS; Waters JK; Ko S; Emerich DW
    Can J Microbiol; 2003 Apr; 49(4):237-43. PubMed ID: 12897832
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isocitrate dehydrogenase of Bradyrhizobium japonicum is not required for symbiotic nitrogen fixation with soybean.
    Shah R; Emerich DW
    J Bacteriol; 2006 Nov; 188(21):7600-8. PubMed ID: 16936027
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A dual conformation of the post-decarboxylation intermediate is associated with distinct enzyme states in mycobacterial KGD (α-ketoglutarate decarboxylase).
    Wagner T; Barilone N; Alzari PM; Bellinzoni M
    Biochem J; 2014 Feb; 457(3):425-34. PubMed ID: 24171907
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonezymatic formation of succinate in mitochondria under oxidative stress.
    Fedotcheva NI; Sokolov AP; Kondrashova MN
    Free Radic Biol Med; 2006 Jul; 41(1):56-64. PubMed ID: 16781453
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Variant tricarboxylic acid cycle in Mycobacterium tuberculosis: identification of alpha-ketoglutarate decarboxylase.
    Tian J; Bryk R; Itoh M; Suematsu M; Nathan C
    Proc Natl Acad Sci U S A; 2005 Jul; 102(30):10670-5. PubMed ID: 16027371
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of the TCA cycle and the general amino acid permease by overflow metabolism in Rhizobium leguminosarum.
    Walshaw DL; Wilkinson A; Mundy M; Smith M; Poole PS
    Microbiology (Reading); 1997 Jul; 143 ( Pt 7)():2209-2221. PubMed ID: 9245810
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon and nitrogen metabolism in Rhizobium.
    Poole P; Allaway D
    Adv Microb Physiol; 2000; 43():117-63. PubMed ID: 10907556
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Properties of an inducible C 4 -dicarboxylic acid transport system in Bacillus subtilis.
    Ghei OK; Kay WW
    J Bacteriol; 1973 Apr; 114(1):65-79. PubMed ID: 4633350
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Formation of Nitrogen-Fixing Bacteroids Is Delayed but Not Abolished in Soybean Infected by an [alpha]-Ketoglutarate Dehydrogenase-Deficient Mutant of Bradyrhizobium japonicum.
    Green LS; Emerich DW
    Plant Physiol; 1997 Aug; 114(4):1359-1368. PubMed ID: 12223774
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GABA synthesis mediated by γ-aminobutanal dehydrogenase in Synechocystis sp. PCC6803 with disrupted glutamate and α-ketoglutarate decarboxylase genes.
    Kanwal S; Incharoensakdi A
    Plant Sci; 2020 Jan; 290():110287. PubMed ID: 31779897
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biochemical and Structural Insights into a Thiamine Diphosphate-Dependent α-Ketoglutarate Decarboxylase from Cyanobacterium
    Li ZM; Hu Z; Wang X; Chen S; Yu W; Liu J; Li Z
    Int J Mol Sci; 2023 Jul; 24(15):. PubMed ID: 37569577
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Menaquinone (vitamin K2) biosynthesis in Escherichia coli: synthesis of o-succinylbenzoate does not require the decarboxylase activity of the ketoglutarate dehydrogenase complex.
    Marley MG; Meganathan R; Bentley R
    Biochemistry; 1986 Mar; 25(6):1304-7. PubMed ID: 3516220
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The tricarboxylic acid cycle in cyanobacteria.
    Zhang S; Bryant DA
    Science; 2011 Dec; 334(6062):1551-3. PubMed ID: 22174252
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CONTROL OF GLUTAMATE OXIDATION IN BRAIN AND LIVER MITOCHONDRIAL SYSTEMS.
    BALAZS R
    Biochem J; 1965 May; 95(2):497-508. PubMed ID: 14340100
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The γ-aminobutyric acid shunt contributes to closing the tricarboxylic acid cycle in Synechocystis sp. PCC 6803.
    Xiong W; Brune D; Vermaas WF
    Mol Microbiol; 2014 Aug; 93(4):786-96. PubMed ID: 24989231
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GABA shunt mediates thermotolerance in Saccharomyces cerevisiae by reducing reactive oxygen production.
    Cao J; Barbosa JM; Singh NK; Locy RD
    Yeast; 2013 Apr; 30(4):129-44. PubMed ID: 23447388
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methylmalonate impairs mitochondrial respiration supported by NADH-linked substrates: involvement of mitochondrial glutamate metabolism.
    Melo DR; Mirandola SR; Assunção NA; Castilho RF
    J Neurosci Res; 2012 Jun; 90(6):1190-9. PubMed ID: 22488725
    [TBL] [Abstract][Full Text] [Related]  

  • 20. alpha-Ketoglutarate dehydrogenase mutant of Rhizobium meliloti.
    Duncan MJ; Fraenkel DG
    J Bacteriol; 1979 Jan; 137(1):415-9. PubMed ID: 762018
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.