BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 10781604)

  • 1. Rsp5 WW domains interact directly with the carboxyl-terminal domain of RNA polymerase II.
    Chang A; Cheang S; Espanel X; Sudol M
    J Biol Chem; 2000 Jul; 275(27):20562-71. PubMed ID: 10781604
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic interactions between the ESS1 prolyl-isomerase and the RSP5 ubiquitin ligase reveal opposing effects on RNA polymerase II function.
    Wu X; Chang A; Sudol M; Hanes SD
    Curr Genet; 2001 Dec; 40(4):234-42. PubMed ID: 11795843
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The large subunit of RNA polymerase II is a substrate of the Rsp5 ubiquitin-protein ligase.
    Huibregtse JM; Yang JC; Beaudenon SL
    Proc Natl Acad Sci U S A; 1997 Apr; 94(8):3656-61. PubMed ID: 9108033
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cooperative and selective roles of the WW domains of the yeast Nedd4-like ubiquitin ligase Rsp5 in the recognition of the arrestin-like adaptors Bul1 and Bul2.
    Watanabe D; Murai H; Tanahashi R; Nakamura K; Sasaki T; Takagi H
    Biochem Biophys Res Commun; 2015 Jul 17-24; 463(1-2):76-81. PubMed ID: 25998383
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional domains of the Rsp5 ubiquitin-protein ligase.
    Wang G; Yang J; Huibregtse JM
    Mol Cell Biol; 1999 Jan; 19(1):342-52. PubMed ID: 9858558
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The splicing factor, Prp40, binds the phosphorylated carboxyl-terminal domain of RNA polymerase II.
    Morris DP; Greenleaf AL
    J Biol Chem; 2000 Dec; 275(51):39935-43. PubMed ID: 10978320
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rsp5 ubiquitin-protein ligase mediates DNA damage-induced degradation of the large subunit of RNA polymerase II in Saccharomyces cerevisiae.
    Beaudenon SL; Huacani MR; Wang G; McDonnell DP; Huibregtse JM
    Mol Cell Biol; 1999 Oct; 19(10):6972-9. PubMed ID: 10490634
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Substrate proteolysis is inhibited by dominant-negative Nedd4 and Rsp5 mutants harboring alterations in WW domain 1.
    Shcherbik N; Kumar S; Haines DS
    J Cell Sci; 2002 Mar; 115(Pt 5):1041-8. PubMed ID: 11870222
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The C2 domain of the ubiquitin ligase Rsp5 is required for ubiquitination of the endocytic protein Rvs167 upon change of nitrogen source.
    Tanahashi R; Afiah TSN; Nishimura A; Watanabe D; Takagi H
    FEMS Yeast Res; 2020 Dec; 20(7):. PubMed ID: 33201982
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphorylation of RNA polymerase II CTD fragments results in tight binding to the WW domain from the yeast prolyl isomerase Ess1.
    Myers JK; Morris DP; Greenleaf AL; Oas TG
    Biochemistry; 2001 Jul; 40(29):8479-86. PubMed ID: 11456485
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphorylation of a conserved Thr357 in yeast Nedd4-like ubiquitin ligase Rsp5 is involved in down-regulation of the general amino acid permease Gap1.
    Sasaki T; Takagi H
    Genes Cells; 2013 Jun; 18(6):459-75. PubMed ID: 23517290
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Basal components of the transcription apparatus (RNA polymerase II, TATA-binding protein) contain activation domains: is the repetitive C-terminal domain (CTD) of RNA polymerase II a "portable enhancer domain"?
    Seipel K; Georgiev O; Gerber HP; Schaffner W
    Mol Reprod Dev; 1994 Oct; 39(2):215-25. PubMed ID: 7826625
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NPl1, an essential yeast gene involved in induced degradation of Gap1 and Fur4 permeases, encodes the Rsp5 ubiquitin-protein ligase.
    Hein C; Springael JY; Volland C; Haguenauer-Tsapis R; André B
    Mol Microbiol; 1995 Oct; 18(1):77-87. PubMed ID: 8596462
    [TBL] [Abstract][Full Text] [Related]  

  • 14. WW domains of Rsp5p define different functions: determination of roles in fluid phase and uracil permease endocytosis in Saccharomyces cerevisiae.
    Gajewska B; Kamińska J; Jesionowska A; Martin NC; Hopper AK; Zoładek T
    Genetics; 2001 Jan; 157(1):91-101. PubMed ID: 11139494
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phospho-carboxyl-terminal domain binding and the role of a prolyl isomerase in pre-mRNA 3'-End formation.
    Morris DP; Phatnani HP; Greenleaf AL
    J Biol Chem; 1999 Oct; 274(44):31583-7. PubMed ID: 10531363
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bul1, a new protein that binds to the Rsp5 ubiquitin ligase in Saccharomyces cerevisiae.
    Yashiroda H; Oguchi T; Yasuda Y; Toh-E A; Kikuchi Y
    Mol Cell Biol; 1996 Jul; 16(7):3255-63. PubMed ID: 8668140
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conformation of the RNA polymerase II C-terminal domain: circular dichroism of long and short fragments.
    Bienkiewicz EA; Moon Woody A; Woody RW
    J Mol Biol; 2000 Mar; 297(1):119-33. PubMed ID: 10704311
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure analysis suggests Ess1 isomerizes the carboxy-terminal domain of RNA polymerase II via a bivalent anchoring mechanism.
    Namitz KEW; Zheng T; Canning AJ; Alicea-Velazquez NL; Castañeda CA; Cosgrove MS; Hanes SD
    Commun Biol; 2021 Mar; 4(1):398. PubMed ID: 33767358
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple interactions drive adaptor-mediated recruitment of the ubiquitin ligase rsp5 to membrane proteins in vivo and in vitro.
    Sullivan JA; Lewis MJ; Nikko E; Pelham HR
    Mol Biol Cell; 2007 Jul; 18(7):2429-40. PubMed ID: 17429078
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Domains of the Rsp5 ubiquitin-protein ligase required for receptor-mediated and fluid-phase endocytosis.
    Dunn R; Hicke L
    Mol Biol Cell; 2001 Feb; 12(2):421-35. PubMed ID: 11179425
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.