BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 10781935)

  • 1. Dorsal induction from dorsal vegetal cells in Xenopus occurs after mid-blastula transition.
    Nagano T; Ito Y; Tashiro K; Kobayakawa Y; Sakai M
    Mech Dev; 2000 May; 93(1-2):3-14. PubMed ID: 10781935
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Properties of the dorsal activity found in the vegetal cortical cytoplasm of Xenopus eggs.
    Holowacz T; Elinson RP
    Development; 1995 Sep; 121(9):2789-98. PubMed ID: 7555707
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Animal and vegetal pole cells of early Xenopus embryos respond differently to maternal dorsal determinants: implications for the patterning of the organiser.
    Darras S; Marikawa Y; Elinson RP; Lemaire P
    Development; 1997 Nov; 124(21):4275-86. PubMed ID: 9334276
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural induction in Xenopus: requirement for ectodermal and endomesodermal signals via Chordin, Noggin, beta-Catenin, and Cerberus.
    Kuroda H; Wessely O; De Robertis EM
    PLoS Biol; 2004 May; 2(5):E92. PubMed ID: 15138495
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cortical cytoplasm, which induces dorsal axis formation in Xenopus, is inactivated by UV irradiation of the oocyte.
    Holowacz T; Elinson RP
    Development; 1993 Sep; 119(1):277-85. PubMed ID: 8275862
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Occurrence of dorsal axis-inducing activity around the vegetal pole of an uncleaved Xenopus egg and displacement to the equatorial region by cortical rotation.
    Fujisue M; Kobayakawa Y; Yamana K
    Development; 1993 May; 118(1):163-70. PubMed ID: 19140289
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anteroposterior patterning in Xenopus embryos: egg fragment assay system reveals a synergy of dorsalizing and posteriorizing embryonic domains.
    Fujii H; Nagai T; Shirasawa H; Doi JY; Yasui K; Nishimatsu S; Takeda H; Sakai M
    Dev Biol; 2002 Dec; 252(1):15-30. PubMed ID: 12453457
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pattern formation in 8-cell composite embryos of Xenopus laevis.
    Kageura H; Yamana K
    J Embryol Exp Morphol; 1986 Feb; 91():79-100. PubMed ID: 3711793
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pre-MBT patterning of early gene regulation in Xenopus: the role of the cortical rotation and mesoderm induction.
    Ding X; Hausen P; Steinbeisser H
    Mech Dev; 1998 Jan; 70(1-2):15-24. PubMed ID: 9510021
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distribution of dorsal-forming activity in precleavage embryos of the Japanese newt, Cynops pyrrhogaster: effects of deletion of vegetal cytoplasm, UV irradiation, and lithium treatment.
    Doi JY; Niigaki H; Sone K; Takabatake T; Takeshima K; Yasui K; Tosuji H; Tsukahara J; Sakai M
    Dev Biol; 2000 Jul; 223(1):154-68. PubMed ID: 10864468
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cortical rotation is required for the correct spatial expression of nr3, sia and gsc in Xenopus embryos.
    Medina A; Wendler SR; Steinbeisser H
    Int J Dev Biol; 1997 Oct; 41(5):741-5. PubMed ID: 9415495
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Muscle gene activation in Xenopus requires intercellular communication during gastrula as well as blastula stages.
    Gurdon JB; Kao K; Kato K; Hopwood ND
    Dev Suppl; 1992; ():137-42. PubMed ID: 1299358
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Patterning and lineage specification in the amphibian embryo.
    Chan AP; Etkin LD
    Curr Top Dev Biol; 2001; 51():1-67. PubMed ID: 11236711
    [TBL] [Abstract][Full Text] [Related]  

  • 14. BMP regulates vegetal pole induction centres in early xenopus development.
    Nachaliel N; Re'Em-Kalma Y; Eshed O; Elias S; Frank D
    Genes Cells; 1998 Oct; 3(10):649-58. PubMed ID: 9893022
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell-autonomous and inductive processes among three embryonic domains control dorsal-ventral and anterior-posterior development of Xenopus laevis.
    Sakai M
    Dev Growth Differ; 2008 Jan; 50(1):49-62. PubMed ID: 17999689
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Autonomous differentiation of dorsal axial structures from an animal cap cleavage stage blastomere in Xenopus.
    Gallagher BC; Hainski AM; Moody SA
    Development; 1991 Aug; 112(4):1103-14. PubMed ID: 1935699
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Boundaries and functional domains in the animal/vegetal axis of Xenopus gastrula mesoderm.
    Kumano G; Ezal C; Smith WC
    Dev Biol; 2001 Aug; 236(2):465-77. PubMed ID: 11476585
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dorsal Blastomeres in the Equatorial Region of the 32-Cell Xenopus Embryo Autonomously Produce Progeny Committed to the Organizer: (Xenopus/32-cell embryo/blastomere transplantation/determinant localization/head organizer).
    Takasaki H; Konishi H
    Dev Growth Differ; 1989 Apr; 31(2):147-156. PubMed ID: 37281786
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Injected Xwnt-8 RNA acts early in Xenopus embryos to promote formation of a vegetal dorsalizing center.
    Smith WC; Harland RM
    Cell; 1991 Nov; 67(4):753-65. PubMed ID: 1657405
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Siamois functions in the early blastula to induce Spemann's organiser.
    Kodjabachian L; Lemaire P
    Mech Dev; 2001 Oct; 108(1-2):71-9. PubMed ID: 11578862
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.