These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 10783735)

  • 1. Light sensitivity of the photoperiodic response system in higher vertebrates: wavelength and intensity effects.
    Kumar V; Rani S
    Indian J Exp Biol; 1999 Nov; 37(11):1053-64. PubMed ID: 10783735
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photoperiodism in higher vertebrates: an adaptive strategy in temporal environment.
    Kumar V
    Indian J Exp Biol; 1997 May; 35(5):427-37. PubMed ID: 9378508
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The thalamic intergeniculate leaflet modulates photoperiod responsiveness in Siberian hamsters.
    Freeman DA; Dhandapani KM; Goldman BD
    Brain Res; 2004 Nov; 1028(1):31-8. PubMed ID: 15518639
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increased late night response to light controls the circadian pacemaker in a nocturnal primate.
    Perret M; Gomez D; Barbosa A; Aujard F; Théry M
    J Biol Rhythms; 2010 Jun; 25(3):186-96. PubMed ID: 20484690
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New findings regarding light intensity and its effects as a zeitgeber in the Sprague-Dawley rat.
    Tischler AC; Winget CM; Holley DC; Deroshia CW; Gott J; Mele G; Callahan PX
    Physiologist; 1993 Feb; 36(1 Suppl):S125-6. PubMed ID: 11538509
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measuring seasonal time within the circadian system: regulation of the suprachiasmatic nuclei by photoperiod.
    Johnston JD
    J Neuroendocrinol; 2005 Jul; 17(7):459-65. PubMed ID: 15946164
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Emergence of circadian and photoperiodic system level properties from interactions among pacemaker cells.
    Beersma DG; van Bunnik BA; Hut RA; Daan S
    J Biol Rhythms; 2008 Aug; 23(4):362-73. PubMed ID: 18663243
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gene expression in the suprachiasmatic nuclei and the photoperiodic time integration.
    Tournier BB; Birkenstock J; Pévet P; Vuillez P
    Neuroscience; 2009 Apr; 160(1):240-7. PubMed ID: 19409208
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonvisual photoreceptors of the deep brain, pineal organs and retina.
    Vigh B; Manzano MJ; Zádori A; Frank CL; Lukáts A; Röhlich P; Szél A; Dávid C
    Histol Histopathol; 2002 Apr; 17(2):555-90. PubMed ID: 11962759
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Circadian photoreception in vertebrates.
    Doyle S; Menaker M
    Cold Spring Harb Symp Quant Biol; 2007; 72():499-508. PubMed ID: 18419310
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ontogenesis of photoperiodic entrainment of the molecular core clockwork in the rat suprachiasmatic nucleus.
    Kováciková Z; Sládek M; Laurinová K; Bendová Z; Illnerová H; Sumová A
    Brain Res; 2005 Dec; 1064(1-2):83-9. PubMed ID: 16289486
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Target areas innervated by PACAP-immunoreactive retinal ganglion cells.
    Hannibal J; Fahrenkrug J
    Cell Tissue Res; 2004 Apr; 316(1):99-113. PubMed ID: 14991397
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immunocytochemical characterization of the pregeniculate nucleus and distribution of retinal and neuropeptide Y terminals in the suprachiasmatic nucleus of the Cebus monkey.
    Pinato L; Frazão R; Cruz-Rizzolo RJ; Cavalcante JS; Nogueira MI
    J Chem Neuroanat; 2009 Jul; 37(4):207-13. PubMed ID: 19481005
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photoperiod regulates multiple gene expression in the suprachiasmatic nuclei and pars tuberalis of the Siberian hamster (Phodopus sungorus).
    Johnston JD; Ebling FJ; Hazlerigg DG
    Eur J Neurosci; 2005 Jun; 21(11):2967-74. PubMed ID: 15978008
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neuroanatomical approaches to the study of insect photoperiodism.
    Shiga S; Numata H
    Photochem Photobiol; 2007; 83(1):76-86. PubMed ID: 16922604
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Circadian effects of light no brighter than moonlight.
    Evans JA; Elliott JA; Gorman MR
    J Biol Rhythms; 2007 Aug; 22(4):356-67. PubMed ID: 17660452
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human pineal physiology and functional significance of melatonin.
    Macchi MM; Bruce JN
    Front Neuroendocrinol; 2004; 25(3-4):177-95. PubMed ID: 15589268
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Processing of daily and seasonal light information in the mammalian circadian clock.
    Meijer JH; Michel S; Vansteensel MJ
    Gen Comp Endocrinol; 2007; 152(2-3):159-64. PubMed ID: 17324426
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Residual photosensitivity in mice lacking both rod opsin and cone photoreceptor cyclic nucleotide gated channel 3 alpha subunit.
    Barnard AR; Appleford JM; Sekaran S; Chinthapalli K; Jenkins A; Seeliger M; Biel M; Humphries P; Douglas RH; Wenzel A; Foster RG; Hankins MW; Lucas RJ
    Vis Neurosci; 2004; 21(5):675-83. PubMed ID: 15683556
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A circadian system is involved in photoperiodic entrainment of the circannual rhythm of Anthrenus verbasci.
    Miyazaki Y; Nisimura T; Numata H
    J Insect Physiol; 2009 May; 55(5):494-8. PubMed ID: 19133269
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.