These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 10784037)
1. Incorporation of [2-3H]glycerol into cell surface components of Bacillus subtilis 168 and thermosensitive mutants affected in wall teichoic acid synthesis: effect of tunicamycin. Pooley HM; Karamata D Microbiology (Reading); 2000 Apr; 146 ( Pt 4)():797-805. PubMed ID: 10784037 [TBL] [Abstract][Full Text] [Related]
2. A conditional-lethal mutant of bacillus subtilis 168 with a thermosensitive glycerol-3-phosphate cytidylyltransferase, an enzyme specific for the synthesis of the major wall teichoic acid. Pooley HM; Abellan FX; Karamata D J Gen Microbiol; 1991 Apr; 137(4):921-8. PubMed ID: 1649892 [TBL] [Abstract][Full Text] [Related]
3. Phosphoglycerol-type wall and lipoteichoic acids are enantiomeric polymers differentiated by the stereospecific glycerophosphodiesterase GlpQ. Walter A; Unsleber S; Rismondo J; Jorge AM; Peschel A; Gründling A; Mayer C J Biol Chem; 2020 Mar; 295(12):4024-4034. PubMed ID: 32047114 [TBL] [Abstract][Full Text] [Related]
4. Incorporation of D-alanine into lipoteichoic acid and wall teichoic acid in Bacillus subtilis. Identification of genes and regulation. Perego M; Glaser P; Minutello A; Strauch MA; Leopold K; Fischer W J Biol Chem; 1995 Jun; 270(26):15598-606. PubMed ID: 7797557 [TBL] [Abstract][Full Text] [Related]
5. Teichoic Acid Polymers Affect Expression and Localization of dl-Endopeptidase LytE Required for Lateral Cell Wall Hydrolysis in Bacillus subtilis. Kasahara J; Kiriyama Y; Miyashita M; Kondo T; Yamada T; Yazawa K; Yoshikawa R; Yamamoto H J Bacteriol; 2016 Jun; 198(11):1585-1594. PubMed ID: 27002131 [TBL] [Abstract][Full Text] [Related]
6. Genetic and biochemical characterization of Bacillus subtilis 168 mutants specifically blocked in the synthesis of the teichoic acid poly(3-O-beta-D-glucopyranosyl-N-acetylgalactosamine 1-phosphate): gneA, a new locus, is associated with UDP-N-acetylglucosamine 4-epimerase activity. Estrela AI; Pooley HM; de Lencastre H; Karamata D J Gen Microbiol; 1991 Apr; 137(4):943-50. PubMed ID: 1906927 [TBL] [Abstract][Full Text] [Related]
8. Poly(glucosyl-N-acetylgalactosamine 1-phosphate), a wall teichoic acid of Bacillus subtilis 168: its biosynthetic pathway and mode of attachment to peptidoglycan. Freymond PP; Lazarevic V; Soldo B; Karamata D Microbiology (Reading); 2006 Jun; 152(Pt 6):1709-1718. PubMed ID: 16735734 [TBL] [Abstract][Full Text] [Related]
9. Changes in wall teichoic acid during the rod-sphere transition of Bacillus subtilis 168. Pollack JH; Neuhaus FC J Bacteriol; 1994 Dec; 176(23):7252-9. PubMed ID: 7961496 [TBL] [Abstract][Full Text] [Related]
10. Discovery of genes required for lipoteichoic acid glycosylation predicts two distinct mechanisms for wall teichoic acid glycosylation. Rismondo J; Percy MG; Gründling A J Biol Chem; 2018 Mar; 293(9):3293-3306. PubMed ID: 29343515 [TBL] [Abstract][Full Text] [Related]
11. Tet38 of Staphylococcus aureus Binds to Host Cell Receptor Complex CD36-Toll-Like Receptor 2 and Protects from Teichoic Acid Synthesis Inhibitors Tunicamycin and Congo Red. Truong-Bolduc QC; Wang Y; Hooper DC Infect Immun; 2019 Jul; 87(7):. PubMed ID: 31010815 [TBL] [Abstract][Full Text] [Related]
12. Distinct and essential morphogenic functions for wall- and lipo-teichoic acids in Bacillus subtilis. Schirner K; Marles-Wright J; Lewis RJ; Errington J EMBO J; 2009 Apr; 28(7):830-42. PubMed ID: 19229300 [TBL] [Abstract][Full Text] [Related]
13. Localization and interactions of teichoic acid synthetic enzymes in Bacillus subtilis. Formstone A; Carballido-López R; Noirot P; Errington J; Scheffers DJ J Bacteriol; 2008 Mar; 190(5):1812-21. PubMed ID: 18156271 [TBL] [Abstract][Full Text] [Related]
14. Visualization of Wall Teichoic Acid Decoration in Bacillus subtilis. Koyano Y; Okajima K; Mihara M; Yamamoto H J Bacteriol; 2023 Apr; 205(4):e0006623. PubMed ID: 37010431 [TBL] [Abstract][Full Text] [Related]
15. Staphylococcus aureus mutants lacking the LytR-CpsA-Psr family of enzymes release cell wall teichoic acids into the extracellular medium. Chan YG; Frankel MB; Dengler V; Schneewind O; Missiakas D J Bacteriol; 2013 Oct; 195(20):4650-9. PubMed ID: 23935043 [TBL] [Abstract][Full Text] [Related]
16. Teichoic acid is an essential polymer in Bacillus subtilis that is functionally distinct from teichuronic acid. Bhavsar AP; Erdman LK; Schertzer JW; Brown ED J Bacteriol; 2004 Dec; 186(23):7865-73. PubMed ID: 15547257 [TBL] [Abstract][Full Text] [Related]
17. Comparison of ribitol and glycerol teichoic acid genes in Bacillus subtilis W23 and 168: identical function, similar divergent organization, but different regulation. Lazarevic V; Abellan FX; Möller SB; Karamata D; Mauël C Microbiology (Reading); 2002 Mar; 148(Pt 3):815-24. PubMed ID: 11882717 [TBL] [Abstract][Full Text] [Related]
18. Insertion and fate of the cell wall in Bacillus subtilis. Mobley HL; Koch AL; Doyle RJ; Streips UN J Bacteriol; 1984 Apr; 158(1):169-79. PubMed ID: 6232259 [TBL] [Abstract][Full Text] [Related]
19. Biosynthesis of wall teichoic acids in Staphylococcus aureus H, Micrococcus varians and Bacillus subtilis W23. Involvement of lipid intermediates containing the disaccharide N-acetylmannosaminyl N-acetylglucosamine. Harrington CR; Baddiley J Eur J Biochem; 1985 Dec; 153(3):639-45. PubMed ID: 3935442 [TBL] [Abstract][Full Text] [Related]
20. Purified, recombinant TagF protein from Bacillus subtilis 168 catalyzes the polymerization of glycerol phosphate onto a membrane acceptor in vitro. Schertzer JW; Brown ED J Biol Chem; 2003 May; 278(20):18002-7. PubMed ID: 12637499 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]