These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 10784149)

  • 1. Development of electrical field-flow fractionation.
    Tri N; Caldwell K; Beckett R
    Anal Chem; 2000 Apr; 72(8):1823-9. PubMed ID: 10784149
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrical field-flow fractionation in particle separation. 1. Monodisperse standards.
    Caldwell KD; Gao YS
    Anal Chem; 1993 Jul; 65(13):1764-72. PubMed ID: 8368528
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-speed particle separation and steric inversion in thin flow field-flow fractionation channels.
    Jensen KD; Williams SK; Giddings JC
    J Chromatogr A; 1996 Oct; 746(1):137-45. PubMed ID: 8885386
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Instrument and method to determine the electrophoretic mobility of nanoparticles and proteins by combining electrical and flow field-flow fractionation.
    Johann C; Elsenberg S; Schuch H; Rösch U
    Anal Chem; 2015 Apr; 87(8):4292-8. PubMed ID: 25789885
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correction for particle-wall interactions in the separation of colloids by flow field-flow fractionation.
    Qing D; Schimpf ME
    Anal Chem; 2002 Jun; 74(11):2478-85. PubMed ID: 12069226
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel method for effective field measurements in electrical field-flow fractionation.
    Merugu S; Sant HJ; Gale BK
    Electrophoresis; 2012 Mar; 33(6):1040-7. PubMed ID: 22528424
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Silver and gold nanoparticle separation using asymmetrical flow-field flow fractionation: Influence of run conditions and of particle and membrane charges.
    Meisterjahn B; Wagner S; von der Kammer F; Hennecke D; Hofmann T
    J Chromatogr A; 2016 Apr; 1440():150-159. PubMed ID: 26948764
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Micro-thermal focusing field-flow fractionation.
    Janca J; Ananieva IA; Menshikova AY; Evseeva TG
    J Chromatogr B Analyt Technol Biomed Life Sci; 2004 Feb; 800(1-2):33-40. PubMed ID: 14698233
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Ionic and Nonionic Carriers in Electrical Field-Flow Fractionation.
    Ornthai M; Siripinyanond A; Gale BK
    Anal Chem; 2016 Feb; 88(3):1794-803. PubMed ID: 26708115
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of electrical field-flow fractionation for gold nanoparticles after improving separation efficiency by carrier liquid optimization.
    Techarang T; Siripinyanond A
    Anal Chim Acta; 2021 Feb; 1144():102-110. PubMed ID: 33453786
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Field-flow fractionation of nano- and microparticles in rotating coiled columns.
    Fedotov PS; Ermolin MS; Katasonova ON
    J Chromatogr A; 2015 Feb; 1381():202-9. PubMed ID: 25597894
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of channel width on the retention of colloidal particles in polarization, steric, and focusing micro-thermal field-flow fractionation.
    Janca J; Ananieva IA; Menshikova AY; Evseeva TG; Dupák J
    J Chromatogr A; 2004 Aug; 1046(1-2):167-73. PubMed ID: 15387186
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study on steric transition in asymmetrical flow field-flow fractionation and application to characterization of high-energy material.
    Dou H; Lee YJ; Jung EC; Lee BC; Lee S
    J Chromatogr A; 2013 Aug; 1304():211-9. PubMed ID: 23871284
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Practical implications of ionic strength effects on particle retention in thermal field-flow fractionation.
    Shiundu PM; Munguti SM; Ratanathanawongs Williams SK
    J Chromatogr A; 2003 Jan; 984(1):67-79. PubMed ID: 12564677
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Circuit modification in electrical field flow fractionation systems generating higher resolution separation of nanoparticles.
    Tasci TO; Johnson WP; Fernandez DP; Manangon E; Gale BK
    J Chromatogr A; 2014 Oct; 1365():164-72. PubMed ID: 25246100
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fast "hyperlayer" separation development in sedimentation field flow fractionation.
    Kassab JR; Cardot PJ; Zahoransky RA; Battu S
    J Chromatogr B Analyt Technol Biomed Life Sci; 2005 Nov; 826(1-2):8-16. PubMed ID: 16011912
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Explicit role of ionic strength in retention behavior of polystyrene latex particles in sedimentation field-flow fractionation: Slip boundary model.
    Rah K; Han S; Choi J; Eum CH; Lee S
    J Chromatogr A; 2017 Dec; 1528():75-82. PubMed ID: 29126589
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Particle size analysis of dilute environmental colloids by flow field-flow fractionation using an opposed flow sample concentration technique.
    Lee H; Williams SK; Giddings JC
    Anal Chem; 1998 Jul; 70(13):2495-503. PubMed ID: 9666722
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental verification of the steric-entropic mode of retention in centrifugal field-flow fractionation using illite clay plates.
    Tadjiki S; Beckett R
    J Chromatogr A; 2018 Feb; 1538():60-66. PubMed ID: 29397986
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Methodology of measurement of ionic strength based on field-flow fractionation.
    Rah K; Choi J; Lee S
    J Chromatogr A; 2021 Nov; 1658():462591. PubMed ID: 34656839
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.